Abstract

Sine-wave threshold characteristics of human color mechanisms inferred by superimposing red and green stimuli in opposite phases have roughly the same curve shapes as those measured under intense chromatic adaptation, but the latter technique yields considerably greater overall sensitivity for the green mechanism. The adaptive-artifact explanation for this discrepancy offered by Cavonius and Estévez is shown to be untenable.

© 1976 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Kelly, “Spatio-temporal frequency characteristics of color-vision mechanisms,” J. Opt. Soc. Am. 64, 983–990 (1974).
    [Crossref]
  2. D. H. Kelly, “Lateral inhibition in human colour mechanisms”, J. Physiol. (London) 228, 55–72 (1973).
  3. For definitions and achromatic measurements of the sine-wave threshold surface, see D. H. Kelly, “Adaptation effects on spatio-temporal sine-wave thresholds,” Vision Res. 12, 89–101 (1972), and “Frequency doubling in visual responses,” J. Opt. Soc. Am. 56, 1628–1633 (1966).
    [Crossref] [PubMed]
  4. G. Wald, “The receptors of human color vision,” Science 145, 1007–1016 (1964).
    [Crossref] [PubMed]
  5. D. G. Green, “The contrast sensitivity of the colour mechanisms of the human eye,” J. Physiol. (London) 196, 415–429 (1968).
  6. D. G. Green, “Sinusoidal flicker characteristics of the color-sensitive mechanisms of the eye,” Vision Res. 9, 591–601 (1969).
    [Crossref] [PubMed]
  7. O. Estévez and H. Spekreijse, “A spectral compensation method for determining the flicker characteristics of the human colour mechanisms,” Vision Res. 14, 823–830 (1974).
    [Crossref] [PubMed]
  8. C. R. Cavonius and O. Estévez, “Sensitivity of human color mechanisms to gratings and flicker,” J. Opt. Soc. Am. 65, 966–968 (1975). See also O. Estévez and C. R. Cavonius, “Flicker sensitivities of the human red and green color mechanisms,” Vision Res. 15, 879–881 (1975).
    [Crossref] [PubMed]
  9. C. R. Cavonius and O. Estévez, “Contrast sensitivity of individual colour mechanisms of human vision,” J. Physiol. (London) 248, 649–662 (1975).
  10. O. Estévez and C. R. Cavonius, “Modulation sensitivity of human colour mechanisms,” J. Opt. Soc. Am. 66, 1436–1438 (1976) (this issue).
    [Crossref]
  11. J. M. Enoch, “The two-color threshold technique of Stiles and derived component color mechanisms,” Chap. 21 in Visual Psychophysics, Vol. VII/ 4, Handbook of Sensory Physiology, edited by D. Jameson and L. M. Hurvich (Springer-Verlag, Berlin, 1972). The quotation (p. 561) is from Enoch’s summary of the conclusions of R. M. Boynton, “Contributions of threshold measurements to color-discrimination theory,” J. Opt. Soc. Am. 53, 165–178 (1963).
    [Crossref] [PubMed]
  12. G. J. C. van der Horst, “Chromatic flicker,” J. Opt. Soc. Am. 59, 1213–1217 (1969).
    [Crossref] [PubMed]
  13. The term “supersensitivity” does not seem appropriate for these results, because Kelly’s lowest modulation thresholds (about 0.16%) are close to the lowest thresholds obtained in other chromatic and achromatic experiments. For example, with binocular viewing of red/green flicker, Cavonius and Estévez report a threshold of 0.17% modulation at 2 Hz. Achromatic contrast thresholds as low as 0.14% modulation have been measured directly, with a 60° stimulus field (see Refs. 8 and 24).
  14. H. deLange, “Research into the dynamic nature of the human fovea-cortex systems with intermittent and modulated light,” J. Opt. Soc. Am. 48, 777–789 (1958).
    [Crossref]
  15. D. H. Kelly, “Visual signal generator,” Rev. Sci. Instrum. 32, 50–55 (1961) (see Fig. 6).
    [Crossref]
  16. P. L. Walraven and H. J. Leebeek, “Phase shift of sinusoidally alternating colored stimulii,” J. Opt. Soc. Am. 54, 78–82 (1964).
    [Crossref] [PubMed]
  17. D. H. Kelly, “Pattern detection and the two-dimensional Fourier transform: Flickering checkerboards and chromatic mechanisms,” Vision Res. 16, 277–287 (1976).
    [Crossref] [PubMed]
  18. Similarly, Estévez and Spekreijee did not obtain low-frequency attenuation when they used deep red light to stimulate the red mechanism alone (see Fig. 6 of Ref. 7).
  19. Hence the two-color results generally differ from the spectral sensitivities of receptors inferred by other methods; e.g., J. J. Vos and P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971). (see also Ref. 11).
    [Crossref] [PubMed]
  20. The derivation of Eq. (1) is given in Refs. 1 and 2 (and in a somewhat different form, in Ref. 5).
  21. Kelly’s red and green sensitivity curves did not change shape at any level above 250 td (see Ref. 2).
  22. W. S. Stiles, “Adaptation, chromatic adaptation, colour transformation,” An. Real Soc. Esp. Fisica Quimica A 57, 149–157 (1961) (see p. 7).
  23. D. H. Kelly, “Effects of the cone-cell distribution on pattern-detection experiments,” J. Opt. Soc. Am. 64, 1523–1525 (1974).
    [Crossref] [PubMed]
  24. R. W. Cohen, C. R. Carlson, and G. S. Cody, “Image descriptors for displays,” , RCA Laboratories, Princeton, N. J. (May, 1976) (see Figs. 33 and 34).

1976 (2)

O. Estévez and C. R. Cavonius, “Modulation sensitivity of human colour mechanisms,” J. Opt. Soc. Am. 66, 1436–1438 (1976) (this issue).
[Crossref]

D. H. Kelly, “Pattern detection and the two-dimensional Fourier transform: Flickering checkerboards and chromatic mechanisms,” Vision Res. 16, 277–287 (1976).
[Crossref] [PubMed]

1975 (2)

1974 (3)

1973 (1)

D. H. Kelly, “Lateral inhibition in human colour mechanisms”, J. Physiol. (London) 228, 55–72 (1973).

1972 (1)

For definitions and achromatic measurements of the sine-wave threshold surface, see D. H. Kelly, “Adaptation effects on spatio-temporal sine-wave thresholds,” Vision Res. 12, 89–101 (1972), and “Frequency doubling in visual responses,” J. Opt. Soc. Am. 56, 1628–1633 (1966).
[Crossref] [PubMed]

1971 (1)

Hence the two-color results generally differ from the spectral sensitivities of receptors inferred by other methods; e.g., J. J. Vos and P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971). (see also Ref. 11).
[Crossref] [PubMed]

1969 (2)

G. J. C. van der Horst, “Chromatic flicker,” J. Opt. Soc. Am. 59, 1213–1217 (1969).
[Crossref] [PubMed]

D. G. Green, “Sinusoidal flicker characteristics of the color-sensitive mechanisms of the eye,” Vision Res. 9, 591–601 (1969).
[Crossref] [PubMed]

1968 (1)

D. G. Green, “The contrast sensitivity of the colour mechanisms of the human eye,” J. Physiol. (London) 196, 415–429 (1968).

1964 (2)

1961 (2)

W. S. Stiles, “Adaptation, chromatic adaptation, colour transformation,” An. Real Soc. Esp. Fisica Quimica A 57, 149–157 (1961) (see p. 7).

D. H. Kelly, “Visual signal generator,” Rev. Sci. Instrum. 32, 50–55 (1961) (see Fig. 6).
[Crossref]

1958 (1)

Carlson, C. R.

R. W. Cohen, C. R. Carlson, and G. S. Cody, “Image descriptors for displays,” , RCA Laboratories, Princeton, N. J. (May, 1976) (see Figs. 33 and 34).

Cavonius, C. R.

Cody, G. S.

R. W. Cohen, C. R. Carlson, and G. S. Cody, “Image descriptors for displays,” , RCA Laboratories, Princeton, N. J. (May, 1976) (see Figs. 33 and 34).

Cohen, R. W.

R. W. Cohen, C. R. Carlson, and G. S. Cody, “Image descriptors for displays,” , RCA Laboratories, Princeton, N. J. (May, 1976) (see Figs. 33 and 34).

deLange, H.

Enoch, J. M.

J. M. Enoch, “The two-color threshold technique of Stiles and derived component color mechanisms,” Chap. 21 in Visual Psychophysics, Vol. VII/ 4, Handbook of Sensory Physiology, edited by D. Jameson and L. M. Hurvich (Springer-Verlag, Berlin, 1972). The quotation (p. 561) is from Enoch’s summary of the conclusions of R. M. Boynton, “Contributions of threshold measurements to color-discrimination theory,” J. Opt. Soc. Am. 53, 165–178 (1963).
[Crossref] [PubMed]

Estévez, O.

O. Estévez and C. R. Cavonius, “Modulation sensitivity of human colour mechanisms,” J. Opt. Soc. Am. 66, 1436–1438 (1976) (this issue).
[Crossref]

C. R. Cavonius and O. Estévez, “Sensitivity of human color mechanisms to gratings and flicker,” J. Opt. Soc. Am. 65, 966–968 (1975). See also O. Estévez and C. R. Cavonius, “Flicker sensitivities of the human red and green color mechanisms,” Vision Res. 15, 879–881 (1975).
[Crossref] [PubMed]

C. R. Cavonius and O. Estévez, “Contrast sensitivity of individual colour mechanisms of human vision,” J. Physiol. (London) 248, 649–662 (1975).

O. Estévez and H. Spekreijse, “A spectral compensation method for determining the flicker characteristics of the human colour mechanisms,” Vision Res. 14, 823–830 (1974).
[Crossref] [PubMed]

Green, D. G.

D. G. Green, “Sinusoidal flicker characteristics of the color-sensitive mechanisms of the eye,” Vision Res. 9, 591–601 (1969).
[Crossref] [PubMed]

D. G. Green, “The contrast sensitivity of the colour mechanisms of the human eye,” J. Physiol. (London) 196, 415–429 (1968).

Kelly, D. H.

D. H. Kelly, “Pattern detection and the two-dimensional Fourier transform: Flickering checkerboards and chromatic mechanisms,” Vision Res. 16, 277–287 (1976).
[Crossref] [PubMed]

D. H. Kelly, “Spatio-temporal frequency characteristics of color-vision mechanisms,” J. Opt. Soc. Am. 64, 983–990 (1974).
[Crossref]

D. H. Kelly, “Effects of the cone-cell distribution on pattern-detection experiments,” J. Opt. Soc. Am. 64, 1523–1525 (1974).
[Crossref] [PubMed]

D. H. Kelly, “Lateral inhibition in human colour mechanisms”, J. Physiol. (London) 228, 55–72 (1973).

For definitions and achromatic measurements of the sine-wave threshold surface, see D. H. Kelly, “Adaptation effects on spatio-temporal sine-wave thresholds,” Vision Res. 12, 89–101 (1972), and “Frequency doubling in visual responses,” J. Opt. Soc. Am. 56, 1628–1633 (1966).
[Crossref] [PubMed]

D. H. Kelly, “Visual signal generator,” Rev. Sci. Instrum. 32, 50–55 (1961) (see Fig. 6).
[Crossref]

Leebeek, H. J.

Spekreijse, H.

O. Estévez and H. Spekreijse, “A spectral compensation method for determining the flicker characteristics of the human colour mechanisms,” Vision Res. 14, 823–830 (1974).
[Crossref] [PubMed]

Stiles, W. S.

W. S. Stiles, “Adaptation, chromatic adaptation, colour transformation,” An. Real Soc. Esp. Fisica Quimica A 57, 149–157 (1961) (see p. 7).

van der Horst, G. J. C.

Vos, J. J.

Hence the two-color results generally differ from the spectral sensitivities of receptors inferred by other methods; e.g., J. J. Vos and P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971). (see also Ref. 11).
[Crossref] [PubMed]

Wald, G.

G. Wald, “The receptors of human color vision,” Science 145, 1007–1016 (1964).
[Crossref] [PubMed]

Walraven, P. L.

Hence the two-color results generally differ from the spectral sensitivities of receptors inferred by other methods; e.g., J. J. Vos and P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971). (see also Ref. 11).
[Crossref] [PubMed]

P. L. Walraven and H. J. Leebeek, “Phase shift of sinusoidally alternating colored stimulii,” J. Opt. Soc. Am. 54, 78–82 (1964).
[Crossref] [PubMed]

An. Real Soc. Esp. Fisica Quimica A (1)

W. S. Stiles, “Adaptation, chromatic adaptation, colour transformation,” An. Real Soc. Esp. Fisica Quimica A 57, 149–157 (1961) (see p. 7).

J. Opt. Soc. Am. (7)

J. Physiol. (London) (3)

C. R. Cavonius and O. Estévez, “Contrast sensitivity of individual colour mechanisms of human vision,” J. Physiol. (London) 248, 649–662 (1975).

D. H. Kelly, “Lateral inhibition in human colour mechanisms”, J. Physiol. (London) 228, 55–72 (1973).

D. G. Green, “The contrast sensitivity of the colour mechanisms of the human eye,” J. Physiol. (London) 196, 415–429 (1968).

Rev. Sci. Instrum. (1)

D. H. Kelly, “Visual signal generator,” Rev. Sci. Instrum. 32, 50–55 (1961) (see Fig. 6).
[Crossref]

Science (1)

G. Wald, “The receptors of human color vision,” Science 145, 1007–1016 (1964).
[Crossref] [PubMed]

Vision Res. (5)

D. H. Kelly, “Pattern detection and the two-dimensional Fourier transform: Flickering checkerboards and chromatic mechanisms,” Vision Res. 16, 277–287 (1976).
[Crossref] [PubMed]

Hence the two-color results generally differ from the spectral sensitivities of receptors inferred by other methods; e.g., J. J. Vos and P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971). (see also Ref. 11).
[Crossref] [PubMed]

D. G. Green, “Sinusoidal flicker characteristics of the color-sensitive mechanisms of the eye,” Vision Res. 9, 591–601 (1969).
[Crossref] [PubMed]

O. Estévez and H. Spekreijse, “A spectral compensation method for determining the flicker characteristics of the human colour mechanisms,” Vision Res. 14, 823–830 (1974).
[Crossref] [PubMed]

For definitions and achromatic measurements of the sine-wave threshold surface, see D. H. Kelly, “Adaptation effects on spatio-temporal sine-wave thresholds,” Vision Res. 12, 89–101 (1972), and “Frequency doubling in visual responses,” J. Opt. Soc. Am. 56, 1628–1633 (1966).
[Crossref] [PubMed]

Other (6)

J. M. Enoch, “The two-color threshold technique of Stiles and derived component color mechanisms,” Chap. 21 in Visual Psychophysics, Vol. VII/ 4, Handbook of Sensory Physiology, edited by D. Jameson and L. M. Hurvich (Springer-Verlag, Berlin, 1972). The quotation (p. 561) is from Enoch’s summary of the conclusions of R. M. Boynton, “Contributions of threshold measurements to color-discrimination theory,” J. Opt. Soc. Am. 53, 165–178 (1963).
[Crossref] [PubMed]

The derivation of Eq. (1) is given in Refs. 1 and 2 (and in a somewhat different form, in Ref. 5).

Kelly’s red and green sensitivity curves did not change shape at any level above 250 td (see Ref. 2).

Similarly, Estévez and Spekreijee did not obtain low-frequency attenuation when they used deep red light to stimulate the red mechanism alone (see Fig. 6 of Ref. 7).

The term “supersensitivity” does not seem appropriate for these results, because Kelly’s lowest modulation thresholds (about 0.16%) are close to the lowest thresholds obtained in other chromatic and achromatic experiments. For example, with binocular viewing of red/green flicker, Cavonius and Estévez report a threshold of 0.17% modulation at 2 Hz. Achromatic contrast thresholds as low as 0.14% modulation have been measured directly, with a 60° stimulus field (see Refs. 8 and 24).

R. W. Cohen, C. R. Carlson, and G. S. Cody, “Image descriptors for displays,” , RCA Laboratories, Princeton, N. J. (May, 1976) (see Figs. 33 and 34).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

FIG. 1
FIG. 1

Map of the spatio-temporal frequency domain at adaptation levels below 100 td, showing regions of linear, Devries-Rose, and Weber-law behavior, where the adaptation exponent (p) is 0, 1 2, and 1, respectively. Dashed lines represent the frequencies used by Kelly1 to test the red and green mechanisms at higher adaptation levels. (The point marked “×” represents the stimulus used for Weber-law tests in Fig. 2.)

FIG. 2
FIG. 2

Threshold amplitude vs adaptation level for an 8 Hz, 3 cycle/deg stimulus, filling a 10° field. Solid circles show data obtained with white light; open squares, with a green (Wratten 61) filter; open circles, the same green stimulus on a purple background (Wratten 35). The two lines have slopes of 1 2 and 1. The solid arrow Indicates the adaptation range of Fig. 1; the open arrow shows the range used by Kelly1,2 to obtain the characteristics of the green mechanism.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S = ( k - r ) / ( k - 1 ) ,
S = ( k - r 1 / p ) / ( k - 1 ) ,
Δ B = c B p ,
B + Δ B sin α x sin ω t .