Abstract

A speckle pattern formed in polarized monochromatic light may be regarded as resulting from a classical random walk in the complex plane. The resulting irradiance fluctuations obey negative exponential statistics, with ratio of standard deviation to mean (i.e., contrast) of unity. Reduction of this contrast, or smoothing of the speckle, requires diversity in polarization, space, frequency, or time. Addition of M uncorrelated speckle patterns on an intensity basis can reduce the contrast by 1/√M. However, addition of speckle patterns on a complex amplitude basis provides no reduction of contrast. The distribution of scale sizes in a speckle pattern (i.e., the Wiener spectrum) is investigated from a physical point of view.

© 1976 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Speckle with a finite number of steps

Joseph W. Goodman
Appl. Opt. 47(4) A111-A118 (2008)

Statistical properties of laser speckle produced in the diffraction field

Junji Ohtsubo and Toshimitsu Asakura
Appl. Opt. 16(6) 1742-1753 (1977)

Measurement of random processes at rough surfaces with digital speckle correlation

Thomas Fricke-Begemann and Klaus D. Hinsch
J. Opt. Soc. Am. A 21(2) 252-262 (2004)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription