Abstract

Optical constants n and k have been calculated from normal incidence transmissivity spectra of thin crystals of Bi8Te7S5. In the 0.4–1 μ range the transmissivity data can be expressed in terms of three classical oscillators, only one of them in the wavelength range of experimental measurements. Only the very thinnest crystal, 5 atoms thick, shows a strong deviation from the bulk value of n. The k value is more thickness dependent.

© 1976 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. H. Soonpaa, in Basic Problems in Thin Film Physics, edited by R. Niedermayer and H. Mayer (Vandenhoeck and Ruprecht, Göttingen, 1966) p. 289.
  2. R. F. Frindt, Phys. Rev. 140, A536 (1965).
    [Crossref]
  3. H. H. Soonpaa, J. Vac. Sci. Technol. 6, 741 (1969).
    [Crossref]
  4. T. O. Meyer and H. H. Soonpaa, Solid State Commun. 6, 527 (1968).
    [Crossref]
  5. H. H. Soonpaa and R. K. Mueller, , Mechanical Division, General Mills, Inc. (1961) AD-257897.
  6. H. H. Soonpaa, Report No. 1940, Mechanical Division, General Mills, Inc. (1960) AD-235354.
  7. K. R. Wilhelm and H. D. Bale, J. Phys. Chem. Solids,  36, 624 (1975).
    [Crossref]
  8. D. Harker, Z. Kristallogr. 89, 175 (1934).
  9. L. Pauling, Am. Mineral. 60, 994 (1975).
  10. J. R. Drabble and C. H. L. Goodman, J. Phys. Chem. Solids 5, 142 (1958).
    [Crossref]
  11. E. Ugaz and H. H. Soonpaa, Solid State Commun. 6, 417 (1968).
    [Crossref]
  12. O. S. Heavens, Optical Properties of Thin Solid Films (Butterworths, London, 1955).
  13. , Self Conjugate Cams, Technical Bulletin from Cam Technology, Inc., Vol. 1, no. 7, Elmsford, N.Y. (1974).
  14. J. A. Zogg, Senior Honors Thesis, University of North Dakota, 1975 (unpublished).
  15. H. H. Soonpaa, J. Phys. Chem. Solids 23, 407 (1962).
    [Crossref]
  16. H. W. Verleur, A. S. Barker, and C. N. Berglund, Phys. Rev. 172, 788 (1968).
    [Crossref]
  17. J. H. Marshall, M. S. Thesis, University of North Dakota, 1974 (unpublished); J. H. Marshall and H. H. Soonpaa, Bull. Am. Phys. Soc. 19, 314 (1974).
  18. H. A. Washburn, J. H. Marshall, and H. H. Soonpaa, Appl. Opt. 11, 1585 (1972).
    [Crossref] [PubMed]

1975 (2)

K. R. Wilhelm and H. D. Bale, J. Phys. Chem. Solids,  36, 624 (1975).
[Crossref]

L. Pauling, Am. Mineral. 60, 994 (1975).

1972 (1)

1969 (1)

H. H. Soonpaa, J. Vac. Sci. Technol. 6, 741 (1969).
[Crossref]

1968 (3)

T. O. Meyer and H. H. Soonpaa, Solid State Commun. 6, 527 (1968).
[Crossref]

E. Ugaz and H. H. Soonpaa, Solid State Commun. 6, 417 (1968).
[Crossref]

H. W. Verleur, A. S. Barker, and C. N. Berglund, Phys. Rev. 172, 788 (1968).
[Crossref]

1965 (1)

R. F. Frindt, Phys. Rev. 140, A536 (1965).
[Crossref]

1962 (1)

H. H. Soonpaa, J. Phys. Chem. Solids 23, 407 (1962).
[Crossref]

1958 (1)

J. R. Drabble and C. H. L. Goodman, J. Phys. Chem. Solids 5, 142 (1958).
[Crossref]

1934 (1)

D. Harker, Z. Kristallogr. 89, 175 (1934).

Bale, H. D.

K. R. Wilhelm and H. D. Bale, J. Phys. Chem. Solids,  36, 624 (1975).
[Crossref]

Barker, A. S.

H. W. Verleur, A. S. Barker, and C. N. Berglund, Phys. Rev. 172, 788 (1968).
[Crossref]

Berglund, C. N.

H. W. Verleur, A. S. Barker, and C. N. Berglund, Phys. Rev. 172, 788 (1968).
[Crossref]

Drabble, J. R.

J. R. Drabble and C. H. L. Goodman, J. Phys. Chem. Solids 5, 142 (1958).
[Crossref]

Frindt, R. F.

R. F. Frindt, Phys. Rev. 140, A536 (1965).
[Crossref]

Goodman, C. H. L.

J. R. Drabble and C. H. L. Goodman, J. Phys. Chem. Solids 5, 142 (1958).
[Crossref]

Harker, D.

D. Harker, Z. Kristallogr. 89, 175 (1934).

Heavens, O. S.

O. S. Heavens, Optical Properties of Thin Solid Films (Butterworths, London, 1955).

Marshall, J. H.

H. A. Washburn, J. H. Marshall, and H. H. Soonpaa, Appl. Opt. 11, 1585 (1972).
[Crossref] [PubMed]

J. H. Marshall, M. S. Thesis, University of North Dakota, 1974 (unpublished); J. H. Marshall and H. H. Soonpaa, Bull. Am. Phys. Soc. 19, 314 (1974).

Meyer, T. O.

T. O. Meyer and H. H. Soonpaa, Solid State Commun. 6, 527 (1968).
[Crossref]

Mueller, R. K.

H. H. Soonpaa and R. K. Mueller, , Mechanical Division, General Mills, Inc. (1961) AD-257897.

Pauling, L.

L. Pauling, Am. Mineral. 60, 994 (1975).

Soonpaa, H. H.

H. A. Washburn, J. H. Marshall, and H. H. Soonpaa, Appl. Opt. 11, 1585 (1972).
[Crossref] [PubMed]

H. H. Soonpaa, J. Vac. Sci. Technol. 6, 741 (1969).
[Crossref]

T. O. Meyer and H. H. Soonpaa, Solid State Commun. 6, 527 (1968).
[Crossref]

E. Ugaz and H. H. Soonpaa, Solid State Commun. 6, 417 (1968).
[Crossref]

H. H. Soonpaa, J. Phys. Chem. Solids 23, 407 (1962).
[Crossref]

H. H. Soonpaa, in Basic Problems in Thin Film Physics, edited by R. Niedermayer and H. Mayer (Vandenhoeck and Ruprecht, Göttingen, 1966) p. 289.

H. H. Soonpaa and R. K. Mueller, , Mechanical Division, General Mills, Inc. (1961) AD-257897.

H. H. Soonpaa, Report No. 1940, Mechanical Division, General Mills, Inc. (1960) AD-235354.

Ugaz, E.

E. Ugaz and H. H. Soonpaa, Solid State Commun. 6, 417 (1968).
[Crossref]

Verleur, H. W.

H. W. Verleur, A. S. Barker, and C. N. Berglund, Phys. Rev. 172, 788 (1968).
[Crossref]

Washburn, H. A.

Wilhelm, K. R.

K. R. Wilhelm and H. D. Bale, J. Phys. Chem. Solids,  36, 624 (1975).
[Crossref]

Zogg, J. A.

J. A. Zogg, Senior Honors Thesis, University of North Dakota, 1975 (unpublished).

Am. Mineral. (1)

L. Pauling, Am. Mineral. 60, 994 (1975).

Appl. Opt. (1)

J. Phys. Chem. Solids (3)

H. H. Soonpaa, J. Phys. Chem. Solids 23, 407 (1962).
[Crossref]

J. R. Drabble and C. H. L. Goodman, J. Phys. Chem. Solids 5, 142 (1958).
[Crossref]

K. R. Wilhelm and H. D. Bale, J. Phys. Chem. Solids,  36, 624 (1975).
[Crossref]

J. Vac. Sci. Technol. (1)

H. H. Soonpaa, J. Vac. Sci. Technol. 6, 741 (1969).
[Crossref]

Phys. Rev. (2)

R. F. Frindt, Phys. Rev. 140, A536 (1965).
[Crossref]

H. W. Verleur, A. S. Barker, and C. N. Berglund, Phys. Rev. 172, 788 (1968).
[Crossref]

Solid State Commun. (2)

E. Ugaz and H. H. Soonpaa, Solid State Commun. 6, 417 (1968).
[Crossref]

T. O. Meyer and H. H. Soonpaa, Solid State Commun. 6, 527 (1968).
[Crossref]

Z. Kristallogr. (1)

D. Harker, Z. Kristallogr. 89, 175 (1934).

Other (7)

H. H. Soonpaa, in Basic Problems in Thin Film Physics, edited by R. Niedermayer and H. Mayer (Vandenhoeck and Ruprecht, Göttingen, 1966) p. 289.

H. H. Soonpaa and R. K. Mueller, , Mechanical Division, General Mills, Inc. (1961) AD-257897.

H. H. Soonpaa, Report No. 1940, Mechanical Division, General Mills, Inc. (1960) AD-235354.

O. S. Heavens, Optical Properties of Thin Solid Films (Butterworths, London, 1955).

, Self Conjugate Cams, Technical Bulletin from Cam Technology, Inc., Vol. 1, no. 7, Elmsford, N.Y. (1974).

J. A. Zogg, Senior Honors Thesis, University of North Dakota, 1975 (unpublished).

J. H. Marshall, M. S. Thesis, University of North Dakota, 1974 (unpublished); J. H. Marshall and H. H. Soonpaa, Bull. Am. Phys. Soc. 19, 314 (1974).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

FIG. 1
FIG. 1

Transmissivity versus wavelength for crystals of Bi8Te7S5 1, 2, 7, and 8 q. l. thick.

FIG. 2
FIG. 2

Real part of index of refraction n versus wavelength for crystals of Bi8Te7S5 1, 2, 7, and 8 q. l. thick.

FIG. 3
FIG. 3

Imaginary part of index of refraction k versus wavelength for crystals of Bi8Te7S5 1, 2, 7, and 8 q. l. thick.

Tables (1)

Tables Icon

TABLE I Classical oscillator constants for crystals of Bi8Te7S5. t = thickness in quintuple layers, Si = strength of ith oscillator, λi = 2πc/ωi wavelength for ith oscillator, ωi = frequency of ith oscillator, Γi = linewidth of ith oscillator, and = constant contribution to the real part of by oscillators outside the range.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

( ω ) = - ω n 2 ω 2 + i ω c ω + i = 1 h S i 1 - ω 2 / ω i 2 - i Γ i ω / ω i .
T 1 = n 2 n 0 [ ( 1 + g 1 ) 2 + h 1 2 ] [ ( 1 + g 2 ) 2 + h 2 2 ] e 2 a 1 + ( g 1 2 + h 1 2 ) ( g 2 2 + h 2 2 ) e - 2 a 1 + C cos 2 γ 1 + D sin 2 γ 1 ,
T = transmission through sample + glue + glass transmission through glue + glass .
T 1 = ( transmission through sample ) ( 1 - R 3 ) ( 1 - R 4 ) ( 1 - R 2 ) ( 1 - R 3 ) ( 1 - R 4 )
= transmission through sample 1 - R 2 .