Abstract

The basic relations of geometrical optics for the case of an isotropic, time-dependent medium are derived from Fermat’s principle. The time-dependent theory is applied by discussing the Debye-Sears effect and the frequency fluctuations in a plane light wave induced by atmospheric turbulence and a steady cross wind. In the former case it is shown that the Brillouin scattering relation Δω = <i>V</i>Δ <i>k</i> holds in the geometrical optics limit where <i>V</i> is the sound velocity, while in the latter case we find, using a method due to Tatarski, that the fluctuations in frequency are of the order of a few kilohertz under the most extreme conditions of turbulence, wind speed, and range. The intensity law of geometrical optics, <i>I</i> σ = constant, is generalized to read <i>I</i>σ/<i>v</i><sup>2</sup> = constant, where <i>v</i> is the frequency of the light wave.

© 1976 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription