Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Wyszecki and W. S. Stiles, Color Science (Wiley, New York, 1967).
  2. K. Takahama and Y. Nayatani, J. Opt. Soc. Am. 62, 1516 (1972).
    [Crossref]
  3. J. Abadie, Integer and Nonlinear Programming (North–Holland, Amsterdam, 1970).

1972 (1)

Abadie, J.

J. Abadie, Integer and Nonlinear Programming (North–Holland, Amsterdam, 1970).

Nayatani, Y.

Stiles, W. S.

G. Wyszecki and W. S. Stiles, Color Science (Wiley, New York, 1967).

Takahama, K.

Wyszecki, G.

G. Wyszecki and W. S. Stiles, Color Science (Wiley, New York, 1967).

J. Opt. Soc. Am. (1)

Other (2)

J. Abadie, Integer and Nonlinear Programming (North–Holland, Amsterdam, 1970).

G. Wyszecki and W. S. Stiles, Color Science (Wiley, New York, 1967).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

FIG. 1
FIG. 1

Spectral reflectance curves calculated by the method of variation (long dashes) and by nonlinear optimization (short dashes). The solid curve represents the starting function.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

λ ρ ( 1 ) ( λ ) s ( λ ) x ¯ ( λ ) = λ ρ ( 2 ) ( λ ) s ( λ ) x ¯ ( λ ) , λ ρ ( 1 ) ( λ ) s ( λ ) y ¯ ( λ ) = λ ρ ( 2 ) ( λ ) s ( λ ) y ¯ ( λ ) , λ ρ ( 1 ) ( λ ) s ( λ ) z ¯ ( λ ) = λ ρ ( 2 ) ( λ ) s ( λ ) z ¯ ( λ ) .
0 ρ ( i ) ( λ ) 1
λ Δ ρ ( λ ) s ( λ ) x ¯ ( λ ) = X - X ( 1 ) , λ Δ ρ ( λ ) s ( λ ) y ¯ ( λ ) = Y - Y ( 1 ) , λ Δ ρ ( λ ) s ( λ ) z ¯ ( λ ) = Z - Z ( 1 ) ,
- ρ ( 1 ) ( λ ) Δ ρ ( λ ) 1 - ρ ( 1 ) ( λ ) ,
Δ ρ ( λ ) = ρ ( λ ) - ρ ( 1 ) ( λ ) .
R = λ [ Δ ρ ( λ ) ] 2