Abstract

Real refractive indices for amorphous and hexagonal water ices were measured between 1610 and 3200 Å, and for amorphous ammonia ice between 1925 and 3200 Å. Upper limits on the absorption coefficients for these ices were established from extinction-coefficient measurements made at 1475 Å for water ices and at 1760 Å for amorphous ammonia ice. Amorphous ices were deposited from the gaseous phase onto a gold-coated sapphire substrate that was cooled to 77 K. Hexagonal water ice was formed by deposition at 155 K. The ice films were illuminated with monochromatic light at two angles of incidence. Interference-fringe periods, which were observed as the film thickness increased at a constant rate, were used to determine the real refractive index of the film. Damping of the fringe amplitude, as the film thickness increased, was used to establish the extinction coefficients.

© 1975 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Anderson, J. G. Pipes, A. L. Broadfoot, and L. Wallace, J. Atmos. Sci. 28, 874 (1969).
    [Crossref]
  2. J. G. Pipes, E. V. Browell, and R. C. Anderson, Icarus 21, 283 (1974).
    [Crossref]
  3. C. G. Pilcher, C. R. Chapman, L. A. Kebofshy, and H. H. Kieffer, Science 167, 1372 (1970).
    [Crossref] [PubMed]
  4. G. P. Kuiper, D. P. Cruikshank, and U. Fink, Sky and Telescope 39, 14 (1970).
  5. G. P. Kuiper, D. P. Cruikshank, and U. Fink, Sky and Telescope 39, 80 (1970).
  6. C. B. Pilcher, S. T. Ridgway, and T. B. McCord, Science 178, 1087 (1972).
    [Crossref] [PubMed]
  7. D. L. Judge and R. W. Carlson, Science 183, 317 (1974).
    [Crossref] [PubMed]
  8. T. V. Johnson and T. B. McCord, Icarus 13, 37 (1970).
    [Crossref]
  9. F. W. Taylor, J. Atmos. Sci. 30, 677 (1973).
    [Crossref]
  10. J. Daniels, Optics Commun. 3, 240 (1971).
    [Crossref]
  11. K. Dressler and O. Schnepp, J. Chem. Phys. 33, 270 (1960).
    [Crossref]
  12. O. Schnepp and K. Dressler, J. Chem. Phys. 33, 49 (1960).
    [Crossref]
  13. L. G. Dowell and A. P. Rinfret, Nature 188, 1144 (1960).
    [Crossref]
  14. F. A. Mauer, L. H. Bolz, H. S. Peiser, and H. F. McMurdie, private communication (1972).
  15. K. E. Tempelmeyer and D. R. Mills, J. Appl. Phys. 39, 2968 (1968).
    [Crossref]
  16. M. Ruiz–Urbieta, E. M. Sparrow, and E. R. G. Eckert, J. Opt. Soc. Am. 61, 351 (1971).
    [Crossref]
  17. E. V. Browell, UV Optical Constants of Water and Ammonia Ices, dissertation University of Florida (June1974), University Microfilm Order No. 75–3478.
  18. N. J. Harrick, Appl. Opt. 10, 2344 (1971).
    [Crossref] [PubMed]
  19. B. A. Seiber, A. M. Smith, B. E. Wood, and P. R. Muller, Appl. Opt. 10, 2086 (1971).
    [Crossref] [PubMed]
  20. J. M. Greenberg, Stars and Stellar Systems: Compendium of Astronautics and Astrophysics (University of Chicago Press, Chicago, 1968), Vol. 7, Ch. 6.
  21. S. I. Popova, L. I. Alperovich, and V. M. Zolotarev, Opt. Spektrosk. 32, 547 (1972) [Opt. Spectrosc. 32, 288 (1972)].
  22. J. E. Marcoux, J. Opt. Soc. Am. 59, 998 (1969).

1974 (2)

J. G. Pipes, E. V. Browell, and R. C. Anderson, Icarus 21, 283 (1974).
[Crossref]

D. L. Judge and R. W. Carlson, Science 183, 317 (1974).
[Crossref] [PubMed]

1973 (1)

F. W. Taylor, J. Atmos. Sci. 30, 677 (1973).
[Crossref]

1972 (2)

S. I. Popova, L. I. Alperovich, and V. M. Zolotarev, Opt. Spektrosk. 32, 547 (1972) [Opt. Spectrosc. 32, 288 (1972)].

C. B. Pilcher, S. T. Ridgway, and T. B. McCord, Science 178, 1087 (1972).
[Crossref] [PubMed]

1971 (4)

1970 (4)

T. V. Johnson and T. B. McCord, Icarus 13, 37 (1970).
[Crossref]

C. G. Pilcher, C. R. Chapman, L. A. Kebofshy, and H. H. Kieffer, Science 167, 1372 (1970).
[Crossref] [PubMed]

G. P. Kuiper, D. P. Cruikshank, and U. Fink, Sky and Telescope 39, 14 (1970).

G. P. Kuiper, D. P. Cruikshank, and U. Fink, Sky and Telescope 39, 80 (1970).

1969 (2)

R. C. Anderson, J. G. Pipes, A. L. Broadfoot, and L. Wallace, J. Atmos. Sci. 28, 874 (1969).
[Crossref]

J. E. Marcoux, J. Opt. Soc. Am. 59, 998 (1969).

1968 (1)

K. E. Tempelmeyer and D. R. Mills, J. Appl. Phys. 39, 2968 (1968).
[Crossref]

1960 (3)

K. Dressler and O. Schnepp, J. Chem. Phys. 33, 270 (1960).
[Crossref]

O. Schnepp and K. Dressler, J. Chem. Phys. 33, 49 (1960).
[Crossref]

L. G. Dowell and A. P. Rinfret, Nature 188, 1144 (1960).
[Crossref]

Alperovich, L. I.

S. I. Popova, L. I. Alperovich, and V. M. Zolotarev, Opt. Spektrosk. 32, 547 (1972) [Opt. Spectrosc. 32, 288 (1972)].

Anderson, R. C.

J. G. Pipes, E. V. Browell, and R. C. Anderson, Icarus 21, 283 (1974).
[Crossref]

R. C. Anderson, J. G. Pipes, A. L. Broadfoot, and L. Wallace, J. Atmos. Sci. 28, 874 (1969).
[Crossref]

Bolz, L. H.

F. A. Mauer, L. H. Bolz, H. S. Peiser, and H. F. McMurdie, private communication (1972).

Broadfoot, A. L.

R. C. Anderson, J. G. Pipes, A. L. Broadfoot, and L. Wallace, J. Atmos. Sci. 28, 874 (1969).
[Crossref]

Browell, E. V.

J. G. Pipes, E. V. Browell, and R. C. Anderson, Icarus 21, 283 (1974).
[Crossref]

E. V. Browell, UV Optical Constants of Water and Ammonia Ices, dissertation University of Florida (June1974), University Microfilm Order No. 75–3478.

Carlson, R. W.

D. L. Judge and R. W. Carlson, Science 183, 317 (1974).
[Crossref] [PubMed]

Chapman, C. R.

C. G. Pilcher, C. R. Chapman, L. A. Kebofshy, and H. H. Kieffer, Science 167, 1372 (1970).
[Crossref] [PubMed]

Cruikshank, D. P.

G. P. Kuiper, D. P. Cruikshank, and U. Fink, Sky and Telescope 39, 80 (1970).

G. P. Kuiper, D. P. Cruikshank, and U. Fink, Sky and Telescope 39, 14 (1970).

Daniels, J.

J. Daniels, Optics Commun. 3, 240 (1971).
[Crossref]

Dowell, L. G.

L. G. Dowell and A. P. Rinfret, Nature 188, 1144 (1960).
[Crossref]

Dressler, K.

O. Schnepp and K. Dressler, J. Chem. Phys. 33, 49 (1960).
[Crossref]

K. Dressler and O. Schnepp, J. Chem. Phys. 33, 270 (1960).
[Crossref]

Eckert, E. R. G.

Fink, U.

G. P. Kuiper, D. P. Cruikshank, and U. Fink, Sky and Telescope 39, 14 (1970).

G. P. Kuiper, D. P. Cruikshank, and U. Fink, Sky and Telescope 39, 80 (1970).

Greenberg, J. M.

J. M. Greenberg, Stars and Stellar Systems: Compendium of Astronautics and Astrophysics (University of Chicago Press, Chicago, 1968), Vol. 7, Ch. 6.

Harrick, N. J.

Johnson, T. V.

T. V. Johnson and T. B. McCord, Icarus 13, 37 (1970).
[Crossref]

Judge, D. L.

D. L. Judge and R. W. Carlson, Science 183, 317 (1974).
[Crossref] [PubMed]

Kebofshy, L. A.

C. G. Pilcher, C. R. Chapman, L. A. Kebofshy, and H. H. Kieffer, Science 167, 1372 (1970).
[Crossref] [PubMed]

Kieffer, H. H.

C. G. Pilcher, C. R. Chapman, L. A. Kebofshy, and H. H. Kieffer, Science 167, 1372 (1970).
[Crossref] [PubMed]

Kuiper, G. P.

G. P. Kuiper, D. P. Cruikshank, and U. Fink, Sky and Telescope 39, 14 (1970).

G. P. Kuiper, D. P. Cruikshank, and U. Fink, Sky and Telescope 39, 80 (1970).

Marcoux, J. E.

Mauer, F. A.

F. A. Mauer, L. H. Bolz, H. S. Peiser, and H. F. McMurdie, private communication (1972).

McCord, T. B.

C. B. Pilcher, S. T. Ridgway, and T. B. McCord, Science 178, 1087 (1972).
[Crossref] [PubMed]

T. V. Johnson and T. B. McCord, Icarus 13, 37 (1970).
[Crossref]

McMurdie, H. F.

F. A. Mauer, L. H. Bolz, H. S. Peiser, and H. F. McMurdie, private communication (1972).

Mills, D. R.

K. E. Tempelmeyer and D. R. Mills, J. Appl. Phys. 39, 2968 (1968).
[Crossref]

Muller, P. R.

Peiser, H. S.

F. A. Mauer, L. H. Bolz, H. S. Peiser, and H. F. McMurdie, private communication (1972).

Pilcher, C. B.

C. B. Pilcher, S. T. Ridgway, and T. B. McCord, Science 178, 1087 (1972).
[Crossref] [PubMed]

Pilcher, C. G.

C. G. Pilcher, C. R. Chapman, L. A. Kebofshy, and H. H. Kieffer, Science 167, 1372 (1970).
[Crossref] [PubMed]

Pipes, J. G.

J. G. Pipes, E. V. Browell, and R. C. Anderson, Icarus 21, 283 (1974).
[Crossref]

R. C. Anderson, J. G. Pipes, A. L. Broadfoot, and L. Wallace, J. Atmos. Sci. 28, 874 (1969).
[Crossref]

Popova, S. I.

S. I. Popova, L. I. Alperovich, and V. M. Zolotarev, Opt. Spektrosk. 32, 547 (1972) [Opt. Spectrosc. 32, 288 (1972)].

Ridgway, S. T.

C. B. Pilcher, S. T. Ridgway, and T. B. McCord, Science 178, 1087 (1972).
[Crossref] [PubMed]

Rinfret, A. P.

L. G. Dowell and A. P. Rinfret, Nature 188, 1144 (1960).
[Crossref]

Ruiz–Urbieta, M.

Schnepp, O.

K. Dressler and O. Schnepp, J. Chem. Phys. 33, 270 (1960).
[Crossref]

O. Schnepp and K. Dressler, J. Chem. Phys. 33, 49 (1960).
[Crossref]

Seiber, B. A.

Smith, A. M.

Sparrow, E. M.

Taylor, F. W.

F. W. Taylor, J. Atmos. Sci. 30, 677 (1973).
[Crossref]

Tempelmeyer, K. E.

K. E. Tempelmeyer and D. R. Mills, J. Appl. Phys. 39, 2968 (1968).
[Crossref]

Wallace, L.

R. C. Anderson, J. G. Pipes, A. L. Broadfoot, and L. Wallace, J. Atmos. Sci. 28, 874 (1969).
[Crossref]

Wood, B. E.

Zolotarev, V. M.

S. I. Popova, L. I. Alperovich, and V. M. Zolotarev, Opt. Spektrosk. 32, 547 (1972) [Opt. Spectrosc. 32, 288 (1972)].

Appl. Opt. (2)

Icarus (2)

J. G. Pipes, E. V. Browell, and R. C. Anderson, Icarus 21, 283 (1974).
[Crossref]

T. V. Johnson and T. B. McCord, Icarus 13, 37 (1970).
[Crossref]

J. Appl. Phys. (1)

K. E. Tempelmeyer and D. R. Mills, J. Appl. Phys. 39, 2968 (1968).
[Crossref]

J. Atmos. Sci. (2)

F. W. Taylor, J. Atmos. Sci. 30, 677 (1973).
[Crossref]

R. C. Anderson, J. G. Pipes, A. L. Broadfoot, and L. Wallace, J. Atmos. Sci. 28, 874 (1969).
[Crossref]

J. Chem. Phys. (2)

K. Dressler and O. Schnepp, J. Chem. Phys. 33, 270 (1960).
[Crossref]

O. Schnepp and K. Dressler, J. Chem. Phys. 33, 49 (1960).
[Crossref]

J. Opt. Soc. Am. (2)

Nature (1)

L. G. Dowell and A. P. Rinfret, Nature 188, 1144 (1960).
[Crossref]

Opt. Spektrosk. (1)

S. I. Popova, L. I. Alperovich, and V. M. Zolotarev, Opt. Spektrosk. 32, 547 (1972) [Opt. Spectrosc. 32, 288 (1972)].

Optics Commun. (1)

J. Daniels, Optics Commun. 3, 240 (1971).
[Crossref]

Science (3)

C. B. Pilcher, S. T. Ridgway, and T. B. McCord, Science 178, 1087 (1972).
[Crossref] [PubMed]

D. L. Judge and R. W. Carlson, Science 183, 317 (1974).
[Crossref] [PubMed]

C. G. Pilcher, C. R. Chapman, L. A. Kebofshy, and H. H. Kieffer, Science 167, 1372 (1970).
[Crossref] [PubMed]

Sky and Telescope (2)

G. P. Kuiper, D. P. Cruikshank, and U. Fink, Sky and Telescope 39, 14 (1970).

G. P. Kuiper, D. P. Cruikshank, and U. Fink, Sky and Telescope 39, 80 (1970).

Other (3)

F. A. Mauer, L. H. Bolz, H. S. Peiser, and H. F. McMurdie, private communication (1972).

E. V. Browell, UV Optical Constants of Water and Ammonia Ices, dissertation University of Florida (June1974), University Microfilm Order No. 75–3478.

J. M. Greenberg, Stars and Stellar Systems: Compendium of Astronautics and Astrophysics (University of Chicago Press, Chicago, 1968), Vol. 7, Ch. 6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

FIG. 1
FIG. 1

Reflection of light from a semitransparent film on an absorbing substrate.

FIG. 2
FIG. 2

Diagram of experimental apparatus. A, Hydrogen light source; B, McPherson 0.3 m monochromator; C, diffusion-pump system; D, light-baffle system; E, MgF2 Rochon polarizer; F, rotatable feedthrough; G, flexible alignment coupling; H, experimental chamber; I, diffusion-pump system; J, MgF2 beam splitter; K, uv-enhanced mirror; L, gold-coated sapphire substrate; M, Cryo-Tip heat exchanger; N, photomultiplier tubes.

FIG. 3
FIG. 3

Experimental arrangement for refractive-index and extinction-coefficient determinations. A, Perpendicularly polarized radiant energy; B, MgF2 beam splitter; C, uv-enhanced mirror; D, photomultiplier tube 6157; E, photomultiplier tube 9553; F, V-block mounts for photomultiplier tubes; G, stops to limit illuminated area on the photomultiplier tubes; H, ice film; I, gold-coated sapphire substrate; J, Cryo-Tip heat exchanger.

FIG. 4
FIG. 4

Typical photomultiplier signals used in refractive-index and extinction-coefficient determinations. A, Examples of PMT signals used in determining the real refractive index for slightly absorbing films; B, Example of PMT signal used in determining the extinction coefficient for highly absorbing ice films.

FIG. 5
FIG. 5

Refractive index of amorphous water ice. ● Our data, ◆ Daniels (Ref. 10), ▲ Seiber et al. (Ref. 19), ---- Extrapolation of Seiber et al. (Ref. 19), ■ Greenberg’s (Ref. 20) values for hexagonal water ice.

FIG. 6
FIG. 6

Absorption coefficients for amorphous water ice. ▲ Our data, ■ Daniels (Ref. 10), --● Dressler and Schnepp (Ref. 11), –● Dressler and Schnepp’s values normalized to experimental data at 1475 Å.

FIG. 7
FIG. 7

Refractive index of hexagonal water ice. ● Our data, ■ Greenberg (Ref. 20), ▲ Popova et al. (Ref. 21).

FIG. 8
FIG. 8

Refractive index of amorphous ammonia ice. ● Our data, ■ theoretical calculations.

FIG. 9
FIG. 9

Normalized absorption coefficient curve for amorphous ammonia ice. ▲ Average of our data at 1760 Å, ● Dressler and Schnepp’s absorption coefficients (Ref. 11) normalized at 1760 Å.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

R = ρ 12 2 + ρ 23 2 e - 4 v 2 η + 2 ρ 12 ρ 23 e - 2 v 2 η cos ( 2 u 2 η + φ 23 - φ 12 ) 1 + ρ 12 2 ρ 23 2 e - 4 v 2 η + 2 ρ 12 ρ 23 e - 2 v 2 η cos ( 2 u 2 η + φ 23 + φ 21 ) ,
ρ 12 2 = ( n 1 cos θ 1 - u 2 ) 2 + v 2 2 ( n 1 cos θ 1 + u 2 ) 2 + v 2 2 , ρ 23 2 = ( u 2 - u 3 ) 2 + ( v 2 - v 3 ) 2 ( u 2 + u 3 ) 2 + ( v 2 + v 3 ) 2 ,
φ 12 = tan - 1 [ 2 v 2 n 1 cos θ 1 u 2 2 + v 2 2 - n 1 2 cos 2 θ 1 ] ,
φ 23 = tan - 1 [ 2 ( u 3 v 2 - u 2 v 3 ) u 2 2 - u 3 2 + v 2 2 - v 3 2 ] .
2 u 2 2 = c + ( c 2 + d ) 1 / 2 ,             2 v 2 2 = - c + ( c 2 + d ) 1 / 2 ,
c = n 2 2 ( 1 - κ 2 2 ) - n 1 2 sin 2 θ 1 ,             d = 4 n 2 2 κ 2 2 ; 2 u 3 2 = a + ( a 2 + b ) 1 / 2 ,             2 v 3 2 = - a + ( a 2 + b ) 1 / 2 ,
a = n 3 2 ( 1 - κ 3 2 ) - n 1 2 sin 2 θ 1 ,             b = 4 n 3 4 κ 3 2 .
v 2 2 n 2 4 κ 2 2 n 2 2 - n 1 2 sin 2 θ 1
u 2 2 n 2 2 - n 1 2 sin 2 θ 1 .
R = ρ 12 2 + ρ 23 2 e - 4 v 2 η - 2 ρ 12 ρ 23 e - 2 v 2 η cos ( ϕ 23 + 2 u 2 η ) 1 + ρ 12 2 ρ 23 2 e - 4 v 2 η - 2 ρ 12 ρ 23 e - 2 v 2 η cos ( ϕ 23 + 2 u 2 η )
- v 2 [ 1 + ρ 23 2 e - 4 v 2 η 0 ± ( ρ 23 / ρ 12 ) ( ρ 12 2 + 1 ) e - 2 v 2 η 0 ] 2 u 2 2 ( 1 - ρ 23 2 e - 4 v 2 η 0 )
Δ h = λ 0 2 ( n 2 2 - n 1 2 sin 2 θ 1 ) 1 / 2 .
n 2 = n 1 { sin 2 α 1 - ( Δ t 2 / Δ t 1 ) 2 sin 2 α 2 1 - ( Δ t 2 / Δ t 1 ) 2 } 1 / 2 .
R ext ρ 12 2 + ρ 23 2 e - 2 β h ± 2 ρ 12 ρ 23 e - β h 1 + ρ 12 2 ρ 23 2 e - 2 β h ± 2 ρ 12 ρ 23 e - β h ,
R max - R min 4 ρ 12 ρ 23 e - β h ( 1 - ρ 12 2 - ρ 23 2 e - 2 β h ) 1 - 4 ρ 12 2 ρ 23 2 e - 2 β h .
R max - R min 4 ρ 12 ρ 23 ( 1 - ρ 12 2 ) e - β h .
β 1 h 2 - h 1 ln [ ( R max - R min ) h 1 ( R max - R min ) h 2 ] .
β 1 h 2 - h 1 ln [ ( S max - S min ) h 1 ( S max - S min ) h 2 ] ,
C = λ 0 2 Δ t ( n 2 2 - n 1 2 sin 2 θ 1 ) 1 / 2 .