Abstract

The performance of a continuous chemical laser is discussed. Fluorine atoms are produced in a SF6 + He mixture by means of a microwave-discharge apparatus that operates in a continuous mode. A maximum output power of 4 W is obtained for a 5 cm length of amplifying medium; this power output is primarily due to P transitions from the 1-0 and 2-1 bands. Weak transitions in the 3-2 band are also observed. The maximum value of measured gain is 0.11 cm−1; good agreement is obtained between theoretical and experimental values of gain.

© 1975 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Stephens and T. A. Cool, Rev. Sci. Instrum. 42, 1489 (1971).
    [Crossref]
  2. J. A. Glaze and G. J. Linford, Rev. Sci. Instrum. 44, 600 (1973).
    [Crossref]
  3. J. J. Hinchen, J. Appl. Phys. 45, 1818 (1974).
    [Crossref]
  4. J. M. Gagné, S. Q. Mah, and Y. Conturie, Appl. Opt. 13, 2835 (1974).
    [Crossref] [PubMed]
  5. S. W. Mayer, M. A. Kwok, R. W. F. Gross, and D. J. Spencer, Appl. Phys. Lett. 17, 516 (1970).
    [Crossref]
  6. M. S. Dzhidzhoev, V. T. Platonenko, and R. V. Khokhlov, Usp. Fiz. Nauk 100, 641 (1970) [Sov. Phys. –Usp. 13, 247 (1970)].
    [Crossref]
  7. N. G. Basov, V. I. Igoshin, E. P. Markin, and A. N. Oraevskii, Kvantovaya Electron. (2), 3 (1971) [Sov. J. Quantum Electron. 1, 119 (1971)].
  8. Y. S. Liu, Appl. Opt. 13, 2505 (1974).
    [Crossref] [PubMed]
  9. R. G. Bosisio, C. F. Weissfloch, and M. R. Wertheimer, J. Microwave Power 7, 325 (1972) and for example: R. M. Bevensee, Electromagnetic Slow-wave Structure Systems (Wiley, New York, 1964) and H. E. Thomas, Handbook of Microwave Techniques and Equipment (Prentice–Hall, Englewood Cliffs, N.J., 1972).
  10. D. I. Rosen, R. N. Sileo, and T. A. Cool, IEEE J. QE–9, 1 (1973).
  11. T. F. Deutsch, Appl. Phys. Lett. 11, 18 (1967).
    [Crossref]
  12. C. J. Ultee, Rev. Sci. Instrum. 42, 1174 (1971).
    [Crossref]
  13. Minoru Obara and Tomoo Fujioka, Appl. Phys. Lett. 25, 656 (1974).
    [Crossref]
  14. R. C. Jones, Appl. Phys. Lett. 22, 653 (1973).
    [Crossref]
  15. A. N. Chester and L. D. Hess, IEEE J. QE–8, 1 (1972).
    [Crossref]
  16. D. Mann, B. A. Thrush, D. R. Lide, J. J. Ball, and N. Acquista, J. Chem. Phys. 57, 420 (1961).
    [Crossref]
  17. T. A. Cool, R. R. Stephens, and J. A. Shirley, J. Appl. Phys. 41, 4038 (1970).
    [Crossref]
  18. R. A. Chodzko, D. J. Spencer, and H. Mirels, IEEE J. QE-9, 550 (1973).
    [Crossref]

1974 (4)

J. J. Hinchen, J. Appl. Phys. 45, 1818 (1974).
[Crossref]

J. M. Gagné, S. Q. Mah, and Y. Conturie, Appl. Opt. 13, 2835 (1974).
[Crossref] [PubMed]

Y. S. Liu, Appl. Opt. 13, 2505 (1974).
[Crossref] [PubMed]

Minoru Obara and Tomoo Fujioka, Appl. Phys. Lett. 25, 656 (1974).
[Crossref]

1973 (4)

R. C. Jones, Appl. Phys. Lett. 22, 653 (1973).
[Crossref]

D. I. Rosen, R. N. Sileo, and T. A. Cool, IEEE J. QE–9, 1 (1973).

J. A. Glaze and G. J. Linford, Rev. Sci. Instrum. 44, 600 (1973).
[Crossref]

R. A. Chodzko, D. J. Spencer, and H. Mirels, IEEE J. QE-9, 550 (1973).
[Crossref]

1972 (2)

R. G. Bosisio, C. F. Weissfloch, and M. R. Wertheimer, J. Microwave Power 7, 325 (1972) and for example: R. M. Bevensee, Electromagnetic Slow-wave Structure Systems (Wiley, New York, 1964) and H. E. Thomas, Handbook of Microwave Techniques and Equipment (Prentice–Hall, Englewood Cliffs, N.J., 1972).

A. N. Chester and L. D. Hess, IEEE J. QE–8, 1 (1972).
[Crossref]

1971 (3)

N. G. Basov, V. I. Igoshin, E. P. Markin, and A. N. Oraevskii, Kvantovaya Electron. (2), 3 (1971) [Sov. J. Quantum Electron. 1, 119 (1971)].

C. J. Ultee, Rev. Sci. Instrum. 42, 1174 (1971).
[Crossref]

R. R. Stephens and T. A. Cool, Rev. Sci. Instrum. 42, 1489 (1971).
[Crossref]

1970 (3)

S. W. Mayer, M. A. Kwok, R. W. F. Gross, and D. J. Spencer, Appl. Phys. Lett. 17, 516 (1970).
[Crossref]

M. S. Dzhidzhoev, V. T. Platonenko, and R. V. Khokhlov, Usp. Fiz. Nauk 100, 641 (1970) [Sov. Phys. –Usp. 13, 247 (1970)].
[Crossref]

T. A. Cool, R. R. Stephens, and J. A. Shirley, J. Appl. Phys. 41, 4038 (1970).
[Crossref]

1967 (1)

T. F. Deutsch, Appl. Phys. Lett. 11, 18 (1967).
[Crossref]

1961 (1)

D. Mann, B. A. Thrush, D. R. Lide, J. J. Ball, and N. Acquista, J. Chem. Phys. 57, 420 (1961).
[Crossref]

Acquista, N.

D. Mann, B. A. Thrush, D. R. Lide, J. J. Ball, and N. Acquista, J. Chem. Phys. 57, 420 (1961).
[Crossref]

Ball, J. J.

D. Mann, B. A. Thrush, D. R. Lide, J. J. Ball, and N. Acquista, J. Chem. Phys. 57, 420 (1961).
[Crossref]

Basov, N. G.

N. G. Basov, V. I. Igoshin, E. P. Markin, and A. N. Oraevskii, Kvantovaya Electron. (2), 3 (1971) [Sov. J. Quantum Electron. 1, 119 (1971)].

Bosisio, R. G.

R. G. Bosisio, C. F. Weissfloch, and M. R. Wertheimer, J. Microwave Power 7, 325 (1972) and for example: R. M. Bevensee, Electromagnetic Slow-wave Structure Systems (Wiley, New York, 1964) and H. E. Thomas, Handbook of Microwave Techniques and Equipment (Prentice–Hall, Englewood Cliffs, N.J., 1972).

Chester, A. N.

A. N. Chester and L. D. Hess, IEEE J. QE–8, 1 (1972).
[Crossref]

Chodzko, R. A.

R. A. Chodzko, D. J. Spencer, and H. Mirels, IEEE J. QE-9, 550 (1973).
[Crossref]

Conturie, Y.

Cool, T. A.

D. I. Rosen, R. N. Sileo, and T. A. Cool, IEEE J. QE–9, 1 (1973).

R. R. Stephens and T. A. Cool, Rev. Sci. Instrum. 42, 1489 (1971).
[Crossref]

T. A. Cool, R. R. Stephens, and J. A. Shirley, J. Appl. Phys. 41, 4038 (1970).
[Crossref]

Deutsch, T. F.

T. F. Deutsch, Appl. Phys. Lett. 11, 18 (1967).
[Crossref]

Dzhidzhoev, M. S.

M. S. Dzhidzhoev, V. T. Platonenko, and R. V. Khokhlov, Usp. Fiz. Nauk 100, 641 (1970) [Sov. Phys. –Usp. 13, 247 (1970)].
[Crossref]

Fujioka, Tomoo

Minoru Obara and Tomoo Fujioka, Appl. Phys. Lett. 25, 656 (1974).
[Crossref]

Gagné, J. M.

Glaze, J. A.

J. A. Glaze and G. J. Linford, Rev. Sci. Instrum. 44, 600 (1973).
[Crossref]

Gross, R. W. F.

S. W. Mayer, M. A. Kwok, R. W. F. Gross, and D. J. Spencer, Appl. Phys. Lett. 17, 516 (1970).
[Crossref]

Hess, L. D.

A. N. Chester and L. D. Hess, IEEE J. QE–8, 1 (1972).
[Crossref]

Hinchen, J. J.

J. J. Hinchen, J. Appl. Phys. 45, 1818 (1974).
[Crossref]

Igoshin, V. I.

N. G. Basov, V. I. Igoshin, E. P. Markin, and A. N. Oraevskii, Kvantovaya Electron. (2), 3 (1971) [Sov. J. Quantum Electron. 1, 119 (1971)].

Jones, R. C.

R. C. Jones, Appl. Phys. Lett. 22, 653 (1973).
[Crossref]

Khokhlov, R. V.

M. S. Dzhidzhoev, V. T. Platonenko, and R. V. Khokhlov, Usp. Fiz. Nauk 100, 641 (1970) [Sov. Phys. –Usp. 13, 247 (1970)].
[Crossref]

Kwok, M. A.

S. W. Mayer, M. A. Kwok, R. W. F. Gross, and D. J. Spencer, Appl. Phys. Lett. 17, 516 (1970).
[Crossref]

Lide, D. R.

D. Mann, B. A. Thrush, D. R. Lide, J. J. Ball, and N. Acquista, J. Chem. Phys. 57, 420 (1961).
[Crossref]

Linford, G. J.

J. A. Glaze and G. J. Linford, Rev. Sci. Instrum. 44, 600 (1973).
[Crossref]

Liu, Y. S.

Mah, S. Q.

Mann, D.

D. Mann, B. A. Thrush, D. R. Lide, J. J. Ball, and N. Acquista, J. Chem. Phys. 57, 420 (1961).
[Crossref]

Markin, E. P.

N. G. Basov, V. I. Igoshin, E. P. Markin, and A. N. Oraevskii, Kvantovaya Electron. (2), 3 (1971) [Sov. J. Quantum Electron. 1, 119 (1971)].

Mayer, S. W.

S. W. Mayer, M. A. Kwok, R. W. F. Gross, and D. J. Spencer, Appl. Phys. Lett. 17, 516 (1970).
[Crossref]

Mirels, H.

R. A. Chodzko, D. J. Spencer, and H. Mirels, IEEE J. QE-9, 550 (1973).
[Crossref]

Obara, Minoru

Minoru Obara and Tomoo Fujioka, Appl. Phys. Lett. 25, 656 (1974).
[Crossref]

Oraevskii, A. N.

N. G. Basov, V. I. Igoshin, E. P. Markin, and A. N. Oraevskii, Kvantovaya Electron. (2), 3 (1971) [Sov. J. Quantum Electron. 1, 119 (1971)].

Platonenko, V. T.

M. S. Dzhidzhoev, V. T. Platonenko, and R. V. Khokhlov, Usp. Fiz. Nauk 100, 641 (1970) [Sov. Phys. –Usp. 13, 247 (1970)].
[Crossref]

Rosen, D. I.

D. I. Rosen, R. N. Sileo, and T. A. Cool, IEEE J. QE–9, 1 (1973).

Shirley, J. A.

T. A. Cool, R. R. Stephens, and J. A. Shirley, J. Appl. Phys. 41, 4038 (1970).
[Crossref]

Sileo, R. N.

D. I. Rosen, R. N. Sileo, and T. A. Cool, IEEE J. QE–9, 1 (1973).

Spencer, D. J.

R. A. Chodzko, D. J. Spencer, and H. Mirels, IEEE J. QE-9, 550 (1973).
[Crossref]

S. W. Mayer, M. A. Kwok, R. W. F. Gross, and D. J. Spencer, Appl. Phys. Lett. 17, 516 (1970).
[Crossref]

Stephens, R. R.

R. R. Stephens and T. A. Cool, Rev. Sci. Instrum. 42, 1489 (1971).
[Crossref]

T. A. Cool, R. R. Stephens, and J. A. Shirley, J. Appl. Phys. 41, 4038 (1970).
[Crossref]

Thrush, B. A.

D. Mann, B. A. Thrush, D. R. Lide, J. J. Ball, and N. Acquista, J. Chem. Phys. 57, 420 (1961).
[Crossref]

Ultee, C. J.

C. J. Ultee, Rev. Sci. Instrum. 42, 1174 (1971).
[Crossref]

Weissfloch, C. F.

R. G. Bosisio, C. F. Weissfloch, and M. R. Wertheimer, J. Microwave Power 7, 325 (1972) and for example: R. M. Bevensee, Electromagnetic Slow-wave Structure Systems (Wiley, New York, 1964) and H. E. Thomas, Handbook of Microwave Techniques and Equipment (Prentice–Hall, Englewood Cliffs, N.J., 1972).

Wertheimer, M. R.

R. G. Bosisio, C. F. Weissfloch, and M. R. Wertheimer, J. Microwave Power 7, 325 (1972) and for example: R. M. Bevensee, Electromagnetic Slow-wave Structure Systems (Wiley, New York, 1964) and H. E. Thomas, Handbook of Microwave Techniques and Equipment (Prentice–Hall, Englewood Cliffs, N.J., 1972).

Appl. Opt. (2)

Appl. Phys. Lett. (4)

S. W. Mayer, M. A. Kwok, R. W. F. Gross, and D. J. Spencer, Appl. Phys. Lett. 17, 516 (1970).
[Crossref]

Minoru Obara and Tomoo Fujioka, Appl. Phys. Lett. 25, 656 (1974).
[Crossref]

R. C. Jones, Appl. Phys. Lett. 22, 653 (1973).
[Crossref]

T. F. Deutsch, Appl. Phys. Lett. 11, 18 (1967).
[Crossref]

IEEE J. (3)

D. I. Rosen, R. N. Sileo, and T. A. Cool, IEEE J. QE–9, 1 (1973).

A. N. Chester and L. D. Hess, IEEE J. QE–8, 1 (1972).
[Crossref]

R. A. Chodzko, D. J. Spencer, and H. Mirels, IEEE J. QE-9, 550 (1973).
[Crossref]

J. Appl. Phys. (2)

T. A. Cool, R. R. Stephens, and J. A. Shirley, J. Appl. Phys. 41, 4038 (1970).
[Crossref]

J. J. Hinchen, J. Appl. Phys. 45, 1818 (1974).
[Crossref]

J. Chem. Phys. (1)

D. Mann, B. A. Thrush, D. R. Lide, J. J. Ball, and N. Acquista, J. Chem. Phys. 57, 420 (1961).
[Crossref]

J. Microwave Power (1)

R. G. Bosisio, C. F. Weissfloch, and M. R. Wertheimer, J. Microwave Power 7, 325 (1972) and for example: R. M. Bevensee, Electromagnetic Slow-wave Structure Systems (Wiley, New York, 1964) and H. E. Thomas, Handbook of Microwave Techniques and Equipment (Prentice–Hall, Englewood Cliffs, N.J., 1972).

Kvantovaya Electron. (2) (1)

N. G. Basov, V. I. Igoshin, E. P. Markin, and A. N. Oraevskii, Kvantovaya Electron. (2), 3 (1971) [Sov. J. Quantum Electron. 1, 119 (1971)].

Rev. Sci. Instrum. (3)

R. R. Stephens and T. A. Cool, Rev. Sci. Instrum. 42, 1489 (1971).
[Crossref]

J. A. Glaze and G. J. Linford, Rev. Sci. Instrum. 44, 600 (1973).
[Crossref]

C. J. Ultee, Rev. Sci. Instrum. 42, 1174 (1971).
[Crossref]

Usp. Fiz. Nauk (1)

M. S. Dzhidzhoev, V. T. Platonenko, and R. V. Khokhlov, Usp. Fiz. Nauk 100, 641 (1970) [Sov. Phys. –Usp. 13, 247 (1970)].
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

FIG. 1
FIG. 1

Block diagram of the chemical laser. (1) Microwave power, (2) circulator, (3) triple-stub tuner, (4) rectangular wave guide to slow-wave structure, (5) slow-wave structure, (6) discharge tube, (7) power meter for transmitted microwave power, (8) power meter for reflected microwave power, (9) power meter for incident microwave power, (10) dummy load, (11) precision vacuum gauge, (12) rotameter flow meter, (13) pressure regulator and gauge, (14) gas-storage cylinder, (15) laser system, (16) vacuum-pump system, (17) radiation shield.

FIG. 2
FIG. 2

Schematic representation of laser chamber.

FIG. 3
FIG. 3

Laser output versus microwave input power, for multimode and multiline operation. Gas mixture is optimized for each microwave-input-power setting.

FIG. 4
FIG. 4

Schematic of experiment. A, laser chamber; B, quartz plasma tube; M1 and M2, mirrors; P power meter.

FIG. 5
FIG. 5

Comparison of the spectral power distribution among P3(J), P2(J), and P1(J) transitions for multiline oscillations.

FIG. 6
FIG. 6

Comparison of the spectral power distribution among P2(J) and P1(J) transitions for single-line oscillations.

FIG. 7
FIG. 7

Relative line strengths versus microwave input power for multiline oscillations, (a) on P1(J) transitions and (b) on P2(J) transitions.

FIG. 8
FIG. 8

(a) Translational temperature versus molar flow rate He. (b) Translational temperature versus microwave input power.

FIG. 9
FIG. 9

Variation of the unsaturated gain with rotational quantum number for P2(J) transitions. The solid curve is the theoretical fit; ηυ = 0.83 (Tυ = 30 000 K), TR = 390 K.

Tables (1)

Tables Icon

TABLE I Observed Pυ(J) transitions.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

F + H 2 HF * ( υ ) + H ,             υ 3 ,             Δ H = - 31.7 kcal / mole ,
P eff = P tot - ( P ref 1 + P trans )
ξ = Laser power , W 800 [ ( mM ) SF 6 / s ) ] .
R 1 R 2 τ 2 exp ( 2 g 0 L ) = 1 ,
g 0 ( υ , J , T R , η υ ) = C s t e υ J T R - 3 / 2 F υ - 1 , J υ , J - 1 E ( υ , J , T R , η υ ) ,
E ( υ , J , T R , η υ ) = η υ B υ exp [ - h c k T R J ( J - 1 ) B υ ] - B υ - 1 exp [ - h c k T R J ( J + 1 ) B υ - 1 ] .
F υ - 1 , J υ , J - 1 = 1 + 0.05 J + 0.0008 J 2
C s t e = ( 2 M 0 ) 1 / 2 π 3 / 2 c m 10 2 N υ - 1 3 0 k 3 / 2 .
P 1 ( 3 ) has a gain of 0.037 ± 001 cm - 1 , P 1 ( 4 ) has a gain of 0.049 ± 0.04 cm - 1 , P 1 ( 5 ) has a gain of 0.033 ± 0.001 cm - 1 .