Abstract

Calculated and experimentally determined plane-of-polarization rotation curves are presented that demonstrate that magneto-optical properties of transitions between degenerate energy levels may be used to design low-loss components for laser systems over the uv to far-ir spectral region. For devices such as optical rotators and modulators, magneto-optical properties of discrete-energy-level transitions offer significant advantages over bulk properties that are used in conventional designs.

© 1975 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. Sansalone, Appl. Opt. 10, 2329 (1971).
    [Crossref] [PubMed]
  2. K. Eidmann, P. Sachsenmaier, H. Salzmann, and R. Sigel, J. Phys. E: Sci. Inst. 5, 56 (1972).
    [Crossref]
  3. L. J. Aplet and J. W. Carson, Appl. Opt. 3, 544 (1964).
    [Crossref]
  4. W. P. Healy and E. A. Power, Am. J. Phys. 42, 1070 (1974).
    [Crossref]
  5. G. A. Tanton, J. Opt. Soc. Am. 65, 95 (1975).
    [Crossref]
  6. N. V. Starostin and P. P. Feofilov, Usp. Fiz. Nauk 97, 621 (1969) [Sov. Phys.-Usp. 12, 252 (1969)].
  7. G. A. Prinz, D. W. Foster, and J. L. Lewis, Phys. Rev. B 8, 2155 (1973).
    [Crossref]
  8. Robert J. Pressly and James P. Wittke, IEEE J. Quant. Electron. 3, 116 (1967).
    [Crossref]

1975 (1)

1974 (1)

W. P. Healy and E. A. Power, Am. J. Phys. 42, 1070 (1974).
[Crossref]

1973 (1)

G. A. Prinz, D. W. Foster, and J. L. Lewis, Phys. Rev. B 8, 2155 (1973).
[Crossref]

1972 (1)

K. Eidmann, P. Sachsenmaier, H. Salzmann, and R. Sigel, J. Phys. E: Sci. Inst. 5, 56 (1972).
[Crossref]

1971 (1)

1969 (1)

N. V. Starostin and P. P. Feofilov, Usp. Fiz. Nauk 97, 621 (1969) [Sov. Phys.-Usp. 12, 252 (1969)].

1967 (1)

Robert J. Pressly and James P. Wittke, IEEE J. Quant. Electron. 3, 116 (1967).
[Crossref]

1964 (1)

Aplet, L. J.

Carson, J. W.

Eidmann, K.

K. Eidmann, P. Sachsenmaier, H. Salzmann, and R. Sigel, J. Phys. E: Sci. Inst. 5, 56 (1972).
[Crossref]

Feofilov, P. P.

N. V. Starostin and P. P. Feofilov, Usp. Fiz. Nauk 97, 621 (1969) [Sov. Phys.-Usp. 12, 252 (1969)].

Foster, D. W.

G. A. Prinz, D. W. Foster, and J. L. Lewis, Phys. Rev. B 8, 2155 (1973).
[Crossref]

Healy, W. P.

W. P. Healy and E. A. Power, Am. J. Phys. 42, 1070 (1974).
[Crossref]

Lewis, J. L.

G. A. Prinz, D. W. Foster, and J. L. Lewis, Phys. Rev. B 8, 2155 (1973).
[Crossref]

Power, E. A.

W. P. Healy and E. A. Power, Am. J. Phys. 42, 1070 (1974).
[Crossref]

Pressly, Robert J.

Robert J. Pressly and James P. Wittke, IEEE J. Quant. Electron. 3, 116 (1967).
[Crossref]

Prinz, G. A.

G. A. Prinz, D. W. Foster, and J. L. Lewis, Phys. Rev. B 8, 2155 (1973).
[Crossref]

Sachsenmaier, P.

K. Eidmann, P. Sachsenmaier, H. Salzmann, and R. Sigel, J. Phys. E: Sci. Inst. 5, 56 (1972).
[Crossref]

Salzmann, H.

K. Eidmann, P. Sachsenmaier, H. Salzmann, and R. Sigel, J. Phys. E: Sci. Inst. 5, 56 (1972).
[Crossref]

Sansalone, F. J.

Sigel, R.

K. Eidmann, P. Sachsenmaier, H. Salzmann, and R. Sigel, J. Phys. E: Sci. Inst. 5, 56 (1972).
[Crossref]

Starostin, N. V.

N. V. Starostin and P. P. Feofilov, Usp. Fiz. Nauk 97, 621 (1969) [Sov. Phys.-Usp. 12, 252 (1969)].

Tanton, G. A.

Wittke, James P.

Robert J. Pressly and James P. Wittke, IEEE J. Quant. Electron. 3, 116 (1967).
[Crossref]

Am. J. Phys. (1)

W. P. Healy and E. A. Power, Am. J. Phys. 42, 1070 (1974).
[Crossref]

Appl. Opt. (2)

IEEE J. Quant. Electron. (1)

Robert J. Pressly and James P. Wittke, IEEE J. Quant. Electron. 3, 116 (1967).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. E: Sci. Inst. (1)

K. Eidmann, P. Sachsenmaier, H. Salzmann, and R. Sigel, J. Phys. E: Sci. Inst. 5, 56 (1972).
[Crossref]

Phys. Rev. B (1)

G. A. Prinz, D. W. Foster, and J. L. Lewis, Phys. Rev. B 8, 2155 (1973).
[Crossref]

Usp. Fiz. Nauk (1)

N. V. Starostin and P. P. Feofilov, Usp. Fiz. Nauk 97, 621 (1969) [Sov. Phys.-Usp. 12, 252 (1969)].

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

FIG. 1
FIG. 1

Upper-state energy level Eu split by an external magnetic field B and resulting absorption line components as a function of photon energy E.

FIG. 2
FIG. 2

Measured rotation spectrum (a) of 7F05D1 transition in CaF2:Sm2+ at 4.3 K, B = 60 kG. Rotation spectrum (solid line) calculated (b) from gaussian-shape absorption components (dotted lines) normalized to the measured peak absorption coefficient.

FIG. 3
FIG. 3

Rotation spectra represented by the solid line in (a) and (b) computed for different separations δ of α+(E) and α(E), represented by dotted lines which have gaussian shapes. Numbers shown along the ordinate must be multiplied by the maximum values of α± to obtain rotation. (c) Computed ratio α(E0)/θ(E0) as a function of component separation.

Tables (1)

Tables Icon

TABLE I Magneto-optical constants of materials.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

θ ± ( E ) = E 2 2 π 0 α ± ( E ) d E E ( E 2 - E 2 ) ,
Λ = θ / x B ,
Λ [ min cm · G ] = ( α ± ) max B ( 0.042 ) ( 180 ) π ( 60 ) .
α ± ( E 0 ) = ( α ± ) max e - 25 10 - 10 [ cm - 1 ]     at     δ = 5.