Abstract

The basis for instrument myopia, the tendency to accommodate inappropriately while viewing through an optical instrument, was investigated in three experiments. The first demonstrated that the distance of a peripheral surround, analogous to a field stop, influences accommodation but that the magnitude of the effect cannot account for instrument myopia. The second experiment re-examined the hypothesis that perceived distance can affect accommodation. The data indicate that perceived distance is unlikely to influence accommodation and does not provide an explanation of instrument myopia. The last experiment tested the hypothesis that instrument myopia is a manifestation of the return of accommodation to an intermediate state of rest or equilibrium in the absence of an adequate stimulus for accommodation. Implications of the intermediate-resting-state hypothesis are discussed.

© 1975 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Moses, Adler’s Physiology of the Eye (Mosby, St. Louis, 1970).
  2. F. W. Campbell, J. Physiol. 123, 357 (1954).
  3. O. W. Richards, Am. J. Optom. 49, 539 (1972).
    [Crossref]
  4. H. Schober, H. Dehler, and R. Kassel, J. Opt. Soc. Am. 60, 103 (1970).
    [Crossref]
  5. T. Shimojima, Jpn. J. Clin. Ophthalmol. 21, 985 (1967).
  6. J. R. Baker, J. Roy. Microscopical Soc. 85, 231 (1966).
    [Crossref]
  7. W. H. Ittelson and A. Ames, J. Psychol. 30, 43 (1950).
    [Crossref]
  8. M. Nakabayashi and T. Katano, Folia Ophthalmol. Japonica 16, 884 (1965).
  9. H. W. Hofstetter, Am. J. Optom. 19, 66 (1942).
    [Crossref]
  10. G. Westheimer, J. Opt. Soc. Am. 47, 714 (1957).
    [Crossref] [PubMed]
  11. R. T. Hennessy and H. W. Leibowitz, Percept. Psychophys. 10, 127 (1971).
    [Crossref]
  12. H. Schober, Optik 6, 282 (1954).
  13. R. T. Hennessy and H. W. Leibowitz, Behav. Res. Meth. Instrum. 4, 237 (1972). H. W. Leibowitz and R. T. Hennessy, Am. Psychologist 30, 349 (1975).
    [Crossref]
  14. H. A. Knoll, Am. J. Optom. 43, 415 (1966).
    [Crossref]
  15. W. R. Baldwin and W. B. Stover, Am. J. Opt. 45, 143 (1968).
    [Crossref]
  16. E. Ingelstam and S. I. Ragnarsson, Vision Res. 12, 411 (1972).
    [Crossref] [PubMed]
  17. When a positive lens is placed before the eye so that the posterior focal point of the lens coincides with the entrance pupil of the eye, the image of an object on the anterior optical axis of the lens retains the same angular size, regardless of the distance of the object. Also, relatively small displacements of the object cause its image to move over a wide range of distances. This principle was first pointed out by Badal. For further elaboration, see K. N. Ogle, Optics, 2nd ed. (Thomas, Springfield, Ill., 1968), p. 226.
  18. In all of the reported measurements of refractive state, axial chromatic aberration associated with the wavelength of the laser light was corrected to 560 nm, using the data of Bedford and Wyszecki [R. E. Bedford and G. Wyszecki, J. Opt. Soc. Am. 57, 564 (1967)].
  19. E. F. Fincham, Br. J. Ophthalmol. 35, 381 (1951).
  20. F. Toates, Physiol. Rev. 52, 828 (1972).
    [PubMed]
  21. R. T. Hennessy and H. W. Leibowitz, J. Opt. Soc. Am. 60, 1700 (1970).
    [Crossref] [PubMed]
  22. W. H. Ittelson, Visual Space Perception (Springer, New York, 1960), p. 69.
  23. J. M. Otero, J. Opt. Soc. Am. 41, 942 (1951).
    [Crossref] [PubMed]
  24. M. W. Morgan, Am. J. Optom. 34, 347 (1957).
    [Crossref]
  25. H. W. Leibowitz, R. T. Hennessy, and D. A. Owens, Psychologia 18,Sept. (1975).
  26. S. M. Luria and J. S. Kinney, Percept. Psychophys. 11, 437 (1972).
    [Crossref]
  27. W. N. Charman, J. Opt. Soc. Am. 64, 102 (1974).
    [Crossref] [PubMed]
  28. K. Ogle and J. Schwartz, J. Opt. Soc. Am. 49, 273 (1959).
    [Crossref] [PubMed]
  29. F. Campbell, Opt. Acta 4, 157 (1957).
    [Crossref]
  30. H. Ripps, N. Chin, I. Siegel, and G. Breinin, Inves. Ophthal. 1, 127 (1962).
  31. Y. LeGrand, Form and Space Vision (Indiana U. P., Bloomington, Ind., 1967).
  32. W. J. Giese, J. Appl. Psychol. 30, 91 (1946).
    [Crossref] [PubMed]
  33. G. Westheimer and S. Blair, Vision Res. 13, 1035 (1973).
    [Crossref] [PubMed]

1975 (1)

H. W. Leibowitz, R. T. Hennessy, and D. A. Owens, Psychologia 18,Sept. (1975).

1974 (1)

1973 (1)

G. Westheimer and S. Blair, Vision Res. 13, 1035 (1973).
[Crossref] [PubMed]

1972 (5)

S. M. Luria and J. S. Kinney, Percept. Psychophys. 11, 437 (1972).
[Crossref]

O. W. Richards, Am. J. Optom. 49, 539 (1972).
[Crossref]

R. T. Hennessy and H. W. Leibowitz, Behav. Res. Meth. Instrum. 4, 237 (1972). H. W. Leibowitz and R. T. Hennessy, Am. Psychologist 30, 349 (1975).
[Crossref]

E. Ingelstam and S. I. Ragnarsson, Vision Res. 12, 411 (1972).
[Crossref] [PubMed]

F. Toates, Physiol. Rev. 52, 828 (1972).
[PubMed]

1971 (1)

R. T. Hennessy and H. W. Leibowitz, Percept. Psychophys. 10, 127 (1971).
[Crossref]

1970 (2)

1968 (1)

W. R. Baldwin and W. B. Stover, Am. J. Opt. 45, 143 (1968).
[Crossref]

1967 (2)

T. Shimojima, Jpn. J. Clin. Ophthalmol. 21, 985 (1967).

In all of the reported measurements of refractive state, axial chromatic aberration associated with the wavelength of the laser light was corrected to 560 nm, using the data of Bedford and Wyszecki [R. E. Bedford and G. Wyszecki, J. Opt. Soc. Am. 57, 564 (1967)].

1966 (2)

H. A. Knoll, Am. J. Optom. 43, 415 (1966).
[Crossref]

J. R. Baker, J. Roy. Microscopical Soc. 85, 231 (1966).
[Crossref]

1965 (1)

M. Nakabayashi and T. Katano, Folia Ophthalmol. Japonica 16, 884 (1965).

1962 (1)

H. Ripps, N. Chin, I. Siegel, and G. Breinin, Inves. Ophthal. 1, 127 (1962).

1959 (1)

1957 (3)

F. Campbell, Opt. Acta 4, 157 (1957).
[Crossref]

M. W. Morgan, Am. J. Optom. 34, 347 (1957).
[Crossref]

G. Westheimer, J. Opt. Soc. Am. 47, 714 (1957).
[Crossref] [PubMed]

1954 (2)

F. W. Campbell, J. Physiol. 123, 357 (1954).

H. Schober, Optik 6, 282 (1954).

1951 (2)

E. F. Fincham, Br. J. Ophthalmol. 35, 381 (1951).

J. M. Otero, J. Opt. Soc. Am. 41, 942 (1951).
[Crossref] [PubMed]

1950 (1)

W. H. Ittelson and A. Ames, J. Psychol. 30, 43 (1950).
[Crossref]

1946 (1)

W. J. Giese, J. Appl. Psychol. 30, 91 (1946).
[Crossref] [PubMed]

1942 (1)

H. W. Hofstetter, Am. J. Optom. 19, 66 (1942).
[Crossref]

Ames, A.

W. H. Ittelson and A. Ames, J. Psychol. 30, 43 (1950).
[Crossref]

Baker, J. R.

J. R. Baker, J. Roy. Microscopical Soc. 85, 231 (1966).
[Crossref]

Baldwin, W. R.

W. R. Baldwin and W. B. Stover, Am. J. Opt. 45, 143 (1968).
[Crossref]

Bedford, R. E.

In all of the reported measurements of refractive state, axial chromatic aberration associated with the wavelength of the laser light was corrected to 560 nm, using the data of Bedford and Wyszecki [R. E. Bedford and G. Wyszecki, J. Opt. Soc. Am. 57, 564 (1967)].

Blair, S.

G. Westheimer and S. Blair, Vision Res. 13, 1035 (1973).
[Crossref] [PubMed]

Breinin, G.

H. Ripps, N. Chin, I. Siegel, and G. Breinin, Inves. Ophthal. 1, 127 (1962).

Campbell, F.

F. Campbell, Opt. Acta 4, 157 (1957).
[Crossref]

Campbell, F. W.

F. W. Campbell, J. Physiol. 123, 357 (1954).

Charman, W. N.

Chin, N.

H. Ripps, N. Chin, I. Siegel, and G. Breinin, Inves. Ophthal. 1, 127 (1962).

Dehler, H.

Fincham, E. F.

E. F. Fincham, Br. J. Ophthalmol. 35, 381 (1951).

Giese, W. J.

W. J. Giese, J. Appl. Psychol. 30, 91 (1946).
[Crossref] [PubMed]

Hennessy, R. T.

H. W. Leibowitz, R. T. Hennessy, and D. A. Owens, Psychologia 18,Sept. (1975).

R. T. Hennessy and H. W. Leibowitz, Behav. Res. Meth. Instrum. 4, 237 (1972). H. W. Leibowitz and R. T. Hennessy, Am. Psychologist 30, 349 (1975).
[Crossref]

R. T. Hennessy and H. W. Leibowitz, Percept. Psychophys. 10, 127 (1971).
[Crossref]

R. T. Hennessy and H. W. Leibowitz, J. Opt. Soc. Am. 60, 1700 (1970).
[Crossref] [PubMed]

Hofstetter, H. W.

H. W. Hofstetter, Am. J. Optom. 19, 66 (1942).
[Crossref]

Ingelstam, E.

E. Ingelstam and S. I. Ragnarsson, Vision Res. 12, 411 (1972).
[Crossref] [PubMed]

Ittelson, W. H.

W. H. Ittelson and A. Ames, J. Psychol. 30, 43 (1950).
[Crossref]

W. H. Ittelson, Visual Space Perception (Springer, New York, 1960), p. 69.

Kassel, R.

Katano, T.

M. Nakabayashi and T. Katano, Folia Ophthalmol. Japonica 16, 884 (1965).

Kinney, J. S.

S. M. Luria and J. S. Kinney, Percept. Psychophys. 11, 437 (1972).
[Crossref]

Knoll, H. A.

H. A. Knoll, Am. J. Optom. 43, 415 (1966).
[Crossref]

LeGrand, Y.

Y. LeGrand, Form and Space Vision (Indiana U. P., Bloomington, Ind., 1967).

Leibowitz, H. W.

H. W. Leibowitz, R. T. Hennessy, and D. A. Owens, Psychologia 18,Sept. (1975).

R. T. Hennessy and H. W. Leibowitz, Behav. Res. Meth. Instrum. 4, 237 (1972). H. W. Leibowitz and R. T. Hennessy, Am. Psychologist 30, 349 (1975).
[Crossref]

R. T. Hennessy and H. W. Leibowitz, Percept. Psychophys. 10, 127 (1971).
[Crossref]

R. T. Hennessy and H. W. Leibowitz, J. Opt. Soc. Am. 60, 1700 (1970).
[Crossref] [PubMed]

Luria, S. M.

S. M. Luria and J. S. Kinney, Percept. Psychophys. 11, 437 (1972).
[Crossref]

Morgan, M. W.

M. W. Morgan, Am. J. Optom. 34, 347 (1957).
[Crossref]

Moses, R. A.

R. A. Moses, Adler’s Physiology of the Eye (Mosby, St. Louis, 1970).

Nakabayashi, M.

M. Nakabayashi and T. Katano, Folia Ophthalmol. Japonica 16, 884 (1965).

Ogle, K.

Ogle, K. N.

When a positive lens is placed before the eye so that the posterior focal point of the lens coincides with the entrance pupil of the eye, the image of an object on the anterior optical axis of the lens retains the same angular size, regardless of the distance of the object. Also, relatively small displacements of the object cause its image to move over a wide range of distances. This principle was first pointed out by Badal. For further elaboration, see K. N. Ogle, Optics, 2nd ed. (Thomas, Springfield, Ill., 1968), p. 226.

Otero, J. M.

Owens, D. A.

H. W. Leibowitz, R. T. Hennessy, and D. A. Owens, Psychologia 18,Sept. (1975).

Ragnarsson, S. I.

E. Ingelstam and S. I. Ragnarsson, Vision Res. 12, 411 (1972).
[Crossref] [PubMed]

Richards, O. W.

O. W. Richards, Am. J. Optom. 49, 539 (1972).
[Crossref]

Ripps, H.

H. Ripps, N. Chin, I. Siegel, and G. Breinin, Inves. Ophthal. 1, 127 (1962).

Schober, H.

Schwartz, J.

Shimojima, T.

T. Shimojima, Jpn. J. Clin. Ophthalmol. 21, 985 (1967).

Siegel, I.

H. Ripps, N. Chin, I. Siegel, and G. Breinin, Inves. Ophthal. 1, 127 (1962).

Stover, W. B.

W. R. Baldwin and W. B. Stover, Am. J. Opt. 45, 143 (1968).
[Crossref]

Toates, F.

F. Toates, Physiol. Rev. 52, 828 (1972).
[PubMed]

Westheimer, G.

G. Westheimer and S. Blair, Vision Res. 13, 1035 (1973).
[Crossref] [PubMed]

G. Westheimer, J. Opt. Soc. Am. 47, 714 (1957).
[Crossref] [PubMed]

Wyszecki, G.

In all of the reported measurements of refractive state, axial chromatic aberration associated with the wavelength of the laser light was corrected to 560 nm, using the data of Bedford and Wyszecki [R. E. Bedford and G. Wyszecki, J. Opt. Soc. Am. 57, 564 (1967)].

Am. J. Opt. (1)

W. R. Baldwin and W. B. Stover, Am. J. Opt. 45, 143 (1968).
[Crossref]

Am. J. Optom. (4)

H. A. Knoll, Am. J. Optom. 43, 415 (1966).
[Crossref]

O. W. Richards, Am. J. Optom. 49, 539 (1972).
[Crossref]

H. W. Hofstetter, Am. J. Optom. 19, 66 (1942).
[Crossref]

M. W. Morgan, Am. J. Optom. 34, 347 (1957).
[Crossref]

Behav. Res. Meth. Instrum. (1)

R. T. Hennessy and H. W. Leibowitz, Behav. Res. Meth. Instrum. 4, 237 (1972). H. W. Leibowitz and R. T. Hennessy, Am. Psychologist 30, 349 (1975).
[Crossref]

Br. J. Ophthalmol. (1)

E. F. Fincham, Br. J. Ophthalmol. 35, 381 (1951).

Folia Ophthalmol. Japonica (1)

M. Nakabayashi and T. Katano, Folia Ophthalmol. Japonica 16, 884 (1965).

Inves. Ophthal. (1)

H. Ripps, N. Chin, I. Siegel, and G. Breinin, Inves. Ophthal. 1, 127 (1962).

J. Appl. Psychol. (1)

W. J. Giese, J. Appl. Psychol. 30, 91 (1946).
[Crossref] [PubMed]

J. Opt. Soc. Am. (7)

J. Physiol. (1)

F. W. Campbell, J. Physiol. 123, 357 (1954).

J. Psychol. (1)

W. H. Ittelson and A. Ames, J. Psychol. 30, 43 (1950).
[Crossref]

J. Roy. Microscopical Soc. (1)

J. R. Baker, J. Roy. Microscopical Soc. 85, 231 (1966).
[Crossref]

Jpn. J. Clin. Ophthalmol. (1)

T. Shimojima, Jpn. J. Clin. Ophthalmol. 21, 985 (1967).

Opt. Acta (1)

F. Campbell, Opt. Acta 4, 157 (1957).
[Crossref]

Optik (1)

H. Schober, Optik 6, 282 (1954).

Percept. Psychophys. (2)

R. T. Hennessy and H. W. Leibowitz, Percept. Psychophys. 10, 127 (1971).
[Crossref]

S. M. Luria and J. S. Kinney, Percept. Psychophys. 11, 437 (1972).
[Crossref]

Physiol. Rev. (1)

F. Toates, Physiol. Rev. 52, 828 (1972).
[PubMed]

Psychologia (1)

H. W. Leibowitz, R. T. Hennessy, and D. A. Owens, Psychologia 18,Sept. (1975).

Vision Res. (2)

G. Westheimer and S. Blair, Vision Res. 13, 1035 (1973).
[Crossref] [PubMed]

E. Ingelstam and S. I. Ragnarsson, Vision Res. 12, 411 (1972).
[Crossref] [PubMed]

Other (4)

When a positive lens is placed before the eye so that the posterior focal point of the lens coincides with the entrance pupil of the eye, the image of an object on the anterior optical axis of the lens retains the same angular size, regardless of the distance of the object. Also, relatively small displacements of the object cause its image to move over a wide range of distances. This principle was first pointed out by Badal. For further elaboration, see K. N. Ogle, Optics, 2nd ed. (Thomas, Springfield, Ill., 1968), p. 226.

R. A. Moses, Adler’s Physiology of the Eye (Mosby, St. Louis, 1970).

Y. LeGrand, Form and Space Vision (Indiana U. P., Bloomington, Ind., 1967).

W. H. Ittelson, Visual Space Perception (Springer, New York, 1960), p. 69.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

FIG. 1
FIG. 1

Schematic diagram of the laser Badal optometer, after Hennessy and Leibowitz (Ref. 13). S: laser; D: motor-driven drum; M: first surface mirror; L: Badal lens; F: field stop and shutter; BSM: beam-splitting mirror; T: fixation target.

FIG. 2
FIG. 2

Schematic diagram of the apparatus for presentation of a fixation target and surround at different distances. O: observer’s eye position; BSP: beam-splitting prism; LBO: laser Badal optometer; L: +6 diopter lens; BSM: beam-splitting-mirror; DS: diffusing screen; FT: fixation target; S: surround; OB: optical bench; FO: fiber optic; I: illumination source; SC: screen. Inset: Observer’s view of fixation cross and checked surround.

FIG. 3
FIG. 3

Refractive state for the annular and checked surrounds, as a function of the surround distance in diopters averaged across target distances. Filled circles: annular surround; squares: checked surround.

FIG. 4
FIG. 4

Refractive state for the checked surround, plotted as a function of fixation target distance for the four surround distances in diopters. Diamond: 0 diopter; square: −1 diopter; triangle: −2 diopters; filled circle: −3 diopters.

FIG. 5
FIG. 5

Scatter plot and regression line showing the relationship between the refractive state during observation of grid target and the resting state of accommodation.

Tables (4)

Tables Icon

TABLE I Means and standard deviations of refractive state in diopters while viewing four sizes of playing cards at 2 m for 12 subjects.

Tables Icon

TABLE II Median reported distance in meters for four sizes of playing cards at 2 m for 12 subjects.

Tables Icon

TABLE III Means and standard deviations in diopters for values of instrument myopia taken from previous studies, and number of subjects from which data were taken.

Tables Icon

TABLE IV Means and standard deviations of refractive state in diopters for three methods of microscope focusing by 22 subjects viewing grid target.