Abstract

Results of autocorrelation functions and power spectral densities of laser Doppler velocimeters in the reference-beam-heterodyning and the cross-beam-mixing mode are derived to handle turbulence measurements, Doppler ambiguity, spatial coherence, and effects of particle concentration and detection aperture. A useful definition of signal-to-noise ratio is given for both correlation and spectral analyses. The signal-to-noise calculation provides a direct comparison of the figures of merit between various arrangements of a laser Doppler velocimeter with methods for signal processing to measure optically the flow properties of a fluid under given experimental conditions.

© 1975 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (38)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription