Abstract

High-resolution Brillouin spectra were recorded for light scattered at small angles from liquid CS2. The use of a single-mode He–Ne laser, locked in frequency to a Fabry–Perot interferometer, permitted measurements of line widths of the order of 10 MHz for frequencies in the range 300–1000 MHz. These measurements extend previous Brillouin line-width measurements at higher frequencies into the region where relaxation effects are dominant and connect the optical measurements with lower-frequency acoustical data.

© 1975 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Andreae, E. Heasell, and J. Lamb, Proc. Phys. Soc. Lond. B 69, 625 (1956).
    [CrossRef]
  2. S. Gewurtz, W. Gornall, and B. Stoicheff, J. Acoust. Soc. Am. 49, 994 (1971).
    [CrossRef]
  3. R. Mountain, Rev. Mod. Phys. 38, 205 (1966).
    [CrossRef]
  4. R. Mountain, J. Res. Natl. Bur. Stand. A 70, 207 (1966).
    [CrossRef]
  5. I. Fabelinskii, Molecular Scattering of Light (Nauka, Moscow, 1965) [English translation (Plenum, New York, 1968)].
  6. G. Stegeman, W. Gornall, V. Volterra, and B. Stoicheff, J. Acoust. Soc. Am. 49, 979 (1971). Our τ denotes the same quantity as the τ of their article or τ2of their Table B-I.
    [CrossRef]
  7. R. Mountain, J. Res. Natl. Bur. Stand. A 72, 95 (1968).
    [CrossRef]

1971 (2)

S. Gewurtz, W. Gornall, and B. Stoicheff, J. Acoust. Soc. Am. 49, 994 (1971).
[CrossRef]

G. Stegeman, W. Gornall, V. Volterra, and B. Stoicheff, J. Acoust. Soc. Am. 49, 979 (1971). Our τ denotes the same quantity as the τ of their article or τ2of their Table B-I.
[CrossRef]

1968 (1)

R. Mountain, J. Res. Natl. Bur. Stand. A 72, 95 (1968).
[CrossRef]

1966 (2)

R. Mountain, Rev. Mod. Phys. 38, 205 (1966).
[CrossRef]

R. Mountain, J. Res. Natl. Bur. Stand. A 70, 207 (1966).
[CrossRef]

1956 (1)

J. Andreae, E. Heasell, and J. Lamb, Proc. Phys. Soc. Lond. B 69, 625 (1956).
[CrossRef]

Andreae, J.

J. Andreae, E. Heasell, and J. Lamb, Proc. Phys. Soc. Lond. B 69, 625 (1956).
[CrossRef]

Fabelinskii, I.

I. Fabelinskii, Molecular Scattering of Light (Nauka, Moscow, 1965) [English translation (Plenum, New York, 1968)].

Gewurtz, S.

S. Gewurtz, W. Gornall, and B. Stoicheff, J. Acoust. Soc. Am. 49, 994 (1971).
[CrossRef]

Gornall, W.

S. Gewurtz, W. Gornall, and B. Stoicheff, J. Acoust. Soc. Am. 49, 994 (1971).
[CrossRef]

G. Stegeman, W. Gornall, V. Volterra, and B. Stoicheff, J. Acoust. Soc. Am. 49, 979 (1971). Our τ denotes the same quantity as the τ of their article or τ2of their Table B-I.
[CrossRef]

Heasell, E.

J. Andreae, E. Heasell, and J. Lamb, Proc. Phys. Soc. Lond. B 69, 625 (1956).
[CrossRef]

Lamb, J.

J. Andreae, E. Heasell, and J. Lamb, Proc. Phys. Soc. Lond. B 69, 625 (1956).
[CrossRef]

Mountain, R.

R. Mountain, J. Res. Natl. Bur. Stand. A 72, 95 (1968).
[CrossRef]

R. Mountain, Rev. Mod. Phys. 38, 205 (1966).
[CrossRef]

R. Mountain, J. Res. Natl. Bur. Stand. A 70, 207 (1966).
[CrossRef]

Stegeman, G.

G. Stegeman, W. Gornall, V. Volterra, and B. Stoicheff, J. Acoust. Soc. Am. 49, 979 (1971). Our τ denotes the same quantity as the τ of their article or τ2of their Table B-I.
[CrossRef]

Stoicheff, B.

S. Gewurtz, W. Gornall, and B. Stoicheff, J. Acoust. Soc. Am. 49, 994 (1971).
[CrossRef]

G. Stegeman, W. Gornall, V. Volterra, and B. Stoicheff, J. Acoust. Soc. Am. 49, 979 (1971). Our τ denotes the same quantity as the τ of their article or τ2of their Table B-I.
[CrossRef]

Volterra, V.

G. Stegeman, W. Gornall, V. Volterra, and B. Stoicheff, J. Acoust. Soc. Am. 49, 979 (1971). Our τ denotes the same quantity as the τ of their article or τ2of their Table B-I.
[CrossRef]

J. Acoust. Soc. Am. (2)

S. Gewurtz, W. Gornall, and B. Stoicheff, J. Acoust. Soc. Am. 49, 994 (1971).
[CrossRef]

G. Stegeman, W. Gornall, V. Volterra, and B. Stoicheff, J. Acoust. Soc. Am. 49, 979 (1971). Our τ denotes the same quantity as the τ of their article or τ2of their Table B-I.
[CrossRef]

J. Res. Natl. Bur. Stand. A (2)

R. Mountain, J. Res. Natl. Bur. Stand. A 72, 95 (1968).
[CrossRef]

R. Mountain, J. Res. Natl. Bur. Stand. A 70, 207 (1966).
[CrossRef]

Proc. Phys. Soc. Lond. B (1)

J. Andreae, E. Heasell, and J. Lamb, Proc. Phys. Soc. Lond. B 69, 625 (1956).
[CrossRef]

Rev. Mod. Phys. (1)

R. Mountain, Rev. Mod. Phys. 38, 205 (1966).
[CrossRef]

Other (1)

I. Fabelinskii, Molecular Scattering of Light (Nauka, Moscow, 1965) [English translation (Plenum, New York, 1968)].

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

FIG. 1
FIG. 1

Block diagram of the apparatus. Optical paths are dashed lines. The optical path from the scatterer to the photo-multiplier is shared by the scattered light and, when the chopper is open, the attenuated laser beam. Electronic signal paths are solid lines. LA, He–Ne laser; X, piezoelectric laser-frequency control; M, mirror; S: sample; SL; annular slit; L, lens; AP, circular aperture; FP, Fabry–Perot interferometer; PM, photomultiplier; C, light chopper; A, optical attenuator; MT, motor and trigger pickoff; PD, pulse amplifier and discriminator; MS, multichannel scaler (Signal lines: N—channel number, n—count rate, T—trigger, O—spectral data output); ID, interferometer drive; DC, drift compensator.

FIG. 2
FIG. 2

Typical Brillouin spectrum, obtained at a scattering angle of 8.3°. The prominent peaks are A, unshifted line, including extra light for tracking, B and C, Brillouin scattered lines, D, unshifted line separated from A by one free spectral range.

FIG. 3
FIG. 3

Computed fit to one Brillouin-scattered line of Fig. 2.

FIG. 4
FIG. 4

Temporal acoustic-absorption coefficient in liquid carbon disulfide for sound frequencies between 2 and 6144 MHz. The results of the present experiment are indicated by open circles, and earlier light-scattering measurements (Ref. 2) by solid circles. Acoustic data (Ref. 1) are shown as solid squares. The solid curve represents a best fit of Eq. (3) to all the data.

Tables (2)

Tables Icon

TABLE I Experimental results.

Tables Icon

TABLE II Physical constants of carbon disulfide.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k = 2 k i sin ( θ / 2 ) .
ω = 2 υ ( n ω i / c ) sin ( θ / 2 ) ,
Γ k 2 = 1 2 λ ρ c υ + 1 ρ ( 4 3 η s + η 1 ) λ υ 0 2 ( 1 + ω 2 τ 2 ) ρ c υ γ ( υ 0 2 + ω 2 τ 2 υ 2 )
+ 1 2 ( ( υ 2 υ 0 2 ) τ 1 + ω 2 τ 2 ) ( 1 λ ω 2 τ ( 1 + ω 2 τ 2 ) ρ υ υ ( υ 0 2 + ω 2 τ 2 υ 2 ) ) ,