Abstract

The saturation irradiance and line-shape parameters of a high-gain laser transition are determined by analyzing the measured gain of a gas-laser amplifier as a function of incident radiation, based on a quadratic approximation to the saturated gain. Experimental results for a high-gain xenon 3.5 μm (5d33–6p22) laser amplifier are presented.

© 1975 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. H. Armstrong, J. Quant. Spectrosc. Radiat. Transfer 7, 16 (1967); also B. H. Armstrong and R. W. Nicholls, Emission, Absorption and Transfer of Radiation in Heated Atmospheres (Pergamon, New York, 1972), pp. 215–237.
    [Crossref]
  2. H. Gamo, J. S. Ostrem, and S. S. Chuang, J. Appl. Phys. 44, 2750 (1973).
    [Crossref]
  3. J. S. Ostrem and H. Gamo, Proc. IEEE 61, 1656 (1973).
    [Crossref]
  4. E. I. Gordon, A. D. White, and J. D. Rigden, in Proceedings of the Symposium on Optical Masers (Brooklyn Polytechnic Institute, Brooklyn, N. Y., 1963), p. 318.
  5. A. Yariv, Introduction to Optical Electronics (Holt, Rinehart and Winston, New York, 1971), Ch. 5.
  6. J. S. Ostrem, Ph. D. dissertation (University of California, Irvine, June1974).
  7. See, for example, C. Daniel and R. S. Wood, Fitting Equations to Data (Wiley—Interscience, New York, 1971).
  8. H. Gamo and S. S. Chuang, Infrared Isolator using Yttrium Iron Garnet, AFOSR 70-1956TR, 1970, available as AD-716468 from the National Technical Information Service, Springfield, Va. 22151.
  9. T. J. Bridges and J. W. Klüver, Appl. Opt. 4, 1121 (1965).
    [Crossref]

1973 (2)

H. Gamo, J. S. Ostrem, and S. S. Chuang, J. Appl. Phys. 44, 2750 (1973).
[Crossref]

J. S. Ostrem and H. Gamo, Proc. IEEE 61, 1656 (1973).
[Crossref]

1967 (1)

B. H. Armstrong, J. Quant. Spectrosc. Radiat. Transfer 7, 16 (1967); also B. H. Armstrong and R. W. Nicholls, Emission, Absorption and Transfer of Radiation in Heated Atmospheres (Pergamon, New York, 1972), pp. 215–237.
[Crossref]

1965 (1)

Armstrong, B. H.

B. H. Armstrong, J. Quant. Spectrosc. Radiat. Transfer 7, 16 (1967); also B. H. Armstrong and R. W. Nicholls, Emission, Absorption and Transfer of Radiation in Heated Atmospheres (Pergamon, New York, 1972), pp. 215–237.
[Crossref]

Bridges, T. J.

Chuang, S. S.

H. Gamo, J. S. Ostrem, and S. S. Chuang, J. Appl. Phys. 44, 2750 (1973).
[Crossref]

H. Gamo and S. S. Chuang, Infrared Isolator using Yttrium Iron Garnet, AFOSR 70-1956TR, 1970, available as AD-716468 from the National Technical Information Service, Springfield, Va. 22151.

Gamo, H.

H. Gamo, J. S. Ostrem, and S. S. Chuang, J. Appl. Phys. 44, 2750 (1973).
[Crossref]

J. S. Ostrem and H. Gamo, Proc. IEEE 61, 1656 (1973).
[Crossref]

H. Gamo and S. S. Chuang, Infrared Isolator using Yttrium Iron Garnet, AFOSR 70-1956TR, 1970, available as AD-716468 from the National Technical Information Service, Springfield, Va. 22151.

Gordon, E. I.

E. I. Gordon, A. D. White, and J. D. Rigden, in Proceedings of the Symposium on Optical Masers (Brooklyn Polytechnic Institute, Brooklyn, N. Y., 1963), p. 318.

Klüver, J. W.

Ostrem, J. S.

H. Gamo, J. S. Ostrem, and S. S. Chuang, J. Appl. Phys. 44, 2750 (1973).
[Crossref]

J. S. Ostrem and H. Gamo, Proc. IEEE 61, 1656 (1973).
[Crossref]

J. S. Ostrem, Ph. D. dissertation (University of California, Irvine, June1974).

Rigden, J. D.

E. I. Gordon, A. D. White, and J. D. Rigden, in Proceedings of the Symposium on Optical Masers (Brooklyn Polytechnic Institute, Brooklyn, N. Y., 1963), p. 318.

White, A. D.

E. I. Gordon, A. D. White, and J. D. Rigden, in Proceedings of the Symposium on Optical Masers (Brooklyn Polytechnic Institute, Brooklyn, N. Y., 1963), p. 318.

Yariv, A.

A. Yariv, Introduction to Optical Electronics (Holt, Rinehart and Winston, New York, 1971), Ch. 5.

Appl. Opt. (1)

J. Appl. Phys. (1)

H. Gamo, J. S. Ostrem, and S. S. Chuang, J. Appl. Phys. 44, 2750 (1973).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

B. H. Armstrong, J. Quant. Spectrosc. Radiat. Transfer 7, 16 (1967); also B. H. Armstrong and R. W. Nicholls, Emission, Absorption and Transfer of Radiation in Heated Atmospheres (Pergamon, New York, 1972), pp. 215–237.
[Crossref]

Proc. IEEE (1)

J. S. Ostrem and H. Gamo, Proc. IEEE 61, 1656 (1973).
[Crossref]

Other (5)

E. I. Gordon, A. D. White, and J. D. Rigden, in Proceedings of the Symposium on Optical Masers (Brooklyn Polytechnic Institute, Brooklyn, N. Y., 1963), p. 318.

A. Yariv, Introduction to Optical Electronics (Holt, Rinehart and Winston, New York, 1971), Ch. 5.

J. S. Ostrem, Ph. D. dissertation (University of California, Irvine, June1974).

See, for example, C. Daniel and R. S. Wood, Fitting Equations to Data (Wiley—Interscience, New York, 1971).

H. Gamo and S. S. Chuang, Infrared Isolator using Yttrium Iron Garnet, AFOSR 70-1956TR, 1970, available as AD-716468 from the National Technical Information Service, Springfield, Va. 22151.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

FIG. 1
FIG. 1

Experimental measurements of the normalized gain versus input irradiance for a xenon 3.5 μm laser amplifier.

FIG. 2
FIG. 2

Numerically calculated values for the first- and second-order coefficients, m(0, y) and n(0, y), of the Taylor-series expansion of the saturated gain at the line center, and their ratio, [m(0, y)]2/n(0, y).

FIG. 3
FIG. 3

Experimental setup for measuring the gain at the line center as a function of the input irradiance.

FIG. 4
FIG. 4

Normalized and unnormalized gain as a function of the input irradiance.

Tables (1)

Tables Icon

TABLE I Numerically calculated values for the first- and second-order coefficients, m(0, y) and n(0, y), of the Taylor-series expansion of the saturated gain at the line center, [m(0, y)]2/n(0, y), and the Voigt function at the line center, ψ(0, y).

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

ψ ( x , y ) = y π exp ( t 2 ) ( x t ) 2 + y 2 d t ,
x = 2 ( ln 2 ) 1 / 2 ( ν ν 0 ) / Δ ν D ,
y = ( ln 2 ) 1 / 2 Δ ν L / Δ ν D ;
Δ ν L = 1 2 π ( 1 τ 1 + 1 τ 2 )
Δ ν D = 2 ν 0 ( 2 k T ln 2 / m c 2 ) 1 / 2 ;
γ [ x , y ( 1 + I ν / I s ) 1 / 2 ] = G ψ [ x , y ( 1 + I ν / I s ) 1 / 2 ] / ( 1 + I ν / I s ) 1 / 2 ,
G = [ N 2 ( g 2 / g 1 ) N 1 ] λ 2 8 π τ s 2 ( ln 2 ) 1 / 2 Δ ν D 1 ( π ) 1 / 2 ,
I s = 4 π 2 h ν Δ ν L / λ 2 ϕ ,
ϕ = τ 2 τ s [ 1 + g 2 g 1 ( 1 τ 2 τ s ) τ 1 τ 2 ] .
γ [ x , y ( 1 + α ) 1 / 2 ] γ ( x , y ) [ 1 α m ( x , y ) + α 2 n ( x , y ) ] ,
m ( x , y ) = 1 2 [ 1 y ψ ( x , y ) ψ ( x , y ) y ] ,
n ( x , y ) = 3 4 m ( x , y ) + 1 8 y 2 ψ ( x , y ) 2 ψ ( x , y ) y 2 .
γ [ 0 , y ( 1 + I / I s ) 1 / 2 ] γ ( 0 , y ) 1 ( I ν I s ) m ( 0 , y ) + ( I ν I s ) 2 n ( 0 , y ) ,
γ ( 0 , y ) = G ψ ( 0 , y )
P ( I ν ) = 1 S I ν + R I ν 2 ,
S = m ( 0 , y ) / I s ,
R = n ( 0 , y ) / I s 2 .
S 2 R = [ m ( 0 , y ) ] 2 n ( 0 , y ) .