Abstract

Two subjects made saccadic eye movements of specified distance horizontally across the central opaque stripe in circular patterns of vertically oriented stripes that differed in area or spatial frequency. Electroretinograms (ERG’s) and visually evoked cortical potentials (VECP’s) associated with these pattern displacements were recorded simultaneously. When the subject moved his eye (i) through either a fraction of a stripe width in a fixed-stimulus configuration or (ii) a complete stripe width across stimuli of various diameters, ERG amplitude increased linearly with the number of visual cells activated. When illuminance changes over equal numbers of receptors were produced by (iii) having the subject make full-stripe saccades in fixed-diameter gratings of various spatial frequencies, the resulting ERG’s were of approximately equal size. VECP’s showed monotonic increases of amplitude with increasing saccade size and area of stimulation. Cortical responses were greatest at gratings of 2.3 cycles/deg for both subjects. The spatial frequencies of 0.47 and 3.6 cycles/deg were less effective.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Armington, K. Gaarder, and A. M. L. Schick, J. Opt. Soc. Am. 57, 1534 (1967).
    [Crossref] [PubMed]
  2. L. A. Riggs, E. P. Johnson, and A. M. L. Schick, J. Opt. Soc. Am. 56, 1621 (1966).
    [Crossref]
  3. J. C. Armington, Vision Res. 8, 263 (1968).
    [Crossref] [PubMed]
  4. R. D. Devoe, H. Ripps, and H. G. Vaughan, Vision Res. 8, 135 (1968).
    [Crossref] [PubMed]
  5. C. Blakemore and F. W. Campbell, J. Physiol. (Lond.) 203, 237 (1969).
  6. F. W. Campbell and J. G. Robson, J. Physiol. (Lond.) 197, 551 (1968).
  7. M. R. Harter and C. T. White, Electroencephalogr. Clin. Neurophysiol. 28, 48 (1970).
    [Crossref] [PubMed]
  8. J. C. Armington, T. R. Corwin, and R. Marsetta, J. Opt. Soc. Am. 61, 1514 (1971).
    [Crossref] [PubMed]
  9. H. Spekreijse, Thesis (University of Amsterdam, 1966).
  10. T. N. Cornsweet, Visual Perception (Academic, New York, 1970), Ch. 12.
  11. Achromatic contrast was specified as a percent by computing C = (L1 − L2)/(L1 + L2) × 100 where L1 is the maximum luminance of a stripe in the grating and L2 is the minimum luminance of a stripe.
  12. J. C. Armington, Behav. Res. Meth. Instrum. 4, 61 (1972).
    [Crossref]
  13. E. P. Johnson, L. A. Riggs, and A. M. L. Schick, Clin. Electroretinogr. Vision Res. Suppl. 1, 75 (1966).
  14. A. Rémond, Rev. Neurologigue 113, 193 (1965).
  15. D. F. Scott and R. G. Bickford, Science 155, 101 (1967).
    [Crossref] [PubMed]
  16. J. S. Barlow and L. Ciganek, Electroencephalogr. Clin. Neurophysiol. 26, 183 (1969).
    [Crossref] [PubMed]
  17. M. R. Harter, Vision Res. 10, 1365 (1970).
    [Crossref] [PubMed]
  18. T. N. Wiesel and D. H. Hubel, J. Neurophysiol. 29, 1115 (1966).
    [PubMed]
  19. F. W. Campbell and L. Maffei, J. Physiol. (Lond.) 207, 635 (1970).
  20. R. F. Miller and J. E. Dowling, J. Neurophysiol. 33, 323 (1970).
    [PubMed]

1972 (1)

J. C. Armington, Behav. Res. Meth. Instrum. 4, 61 (1972).
[Crossref]

1971 (1)

1970 (4)

M. R. Harter and C. T. White, Electroencephalogr. Clin. Neurophysiol. 28, 48 (1970).
[Crossref] [PubMed]

M. R. Harter, Vision Res. 10, 1365 (1970).
[Crossref] [PubMed]

F. W. Campbell and L. Maffei, J. Physiol. (Lond.) 207, 635 (1970).

R. F. Miller and J. E. Dowling, J. Neurophysiol. 33, 323 (1970).
[PubMed]

1969 (2)

J. S. Barlow and L. Ciganek, Electroencephalogr. Clin. Neurophysiol. 26, 183 (1969).
[Crossref] [PubMed]

C. Blakemore and F. W. Campbell, J. Physiol. (Lond.) 203, 237 (1969).

1968 (3)

F. W. Campbell and J. G. Robson, J. Physiol. (Lond.) 197, 551 (1968).

J. C. Armington, Vision Res. 8, 263 (1968).
[Crossref] [PubMed]

R. D. Devoe, H. Ripps, and H. G. Vaughan, Vision Res. 8, 135 (1968).
[Crossref] [PubMed]

1967 (2)

1966 (3)

E. P. Johnson, L. A. Riggs, and A. M. L. Schick, Clin. Electroretinogr. Vision Res. Suppl. 1, 75 (1966).

T. N. Wiesel and D. H. Hubel, J. Neurophysiol. 29, 1115 (1966).
[PubMed]

L. A. Riggs, E. P. Johnson, and A. M. L. Schick, J. Opt. Soc. Am. 56, 1621 (1966).
[Crossref]

1965 (1)

A. Rémond, Rev. Neurologigue 113, 193 (1965).

Armington, J. C.

Barlow, J. S.

J. S. Barlow and L. Ciganek, Electroencephalogr. Clin. Neurophysiol. 26, 183 (1969).
[Crossref] [PubMed]

Bickford, R. G.

D. F. Scott and R. G. Bickford, Science 155, 101 (1967).
[Crossref] [PubMed]

Blakemore, C.

C. Blakemore and F. W. Campbell, J. Physiol. (Lond.) 203, 237 (1969).

Campbell, F. W.

F. W. Campbell and L. Maffei, J. Physiol. (Lond.) 207, 635 (1970).

C. Blakemore and F. W. Campbell, J. Physiol. (Lond.) 203, 237 (1969).

F. W. Campbell and J. G. Robson, J. Physiol. (Lond.) 197, 551 (1968).

Ciganek, L.

J. S. Barlow and L. Ciganek, Electroencephalogr. Clin. Neurophysiol. 26, 183 (1969).
[Crossref] [PubMed]

Cornsweet, T. N.

T. N. Cornsweet, Visual Perception (Academic, New York, 1970), Ch. 12.

Corwin, T. R.

Devoe, R. D.

R. D. Devoe, H. Ripps, and H. G. Vaughan, Vision Res. 8, 135 (1968).
[Crossref] [PubMed]

Dowling, J. E.

R. F. Miller and J. E. Dowling, J. Neurophysiol. 33, 323 (1970).
[PubMed]

Gaarder, K.

Harter, M. R.

M. R. Harter and C. T. White, Electroencephalogr. Clin. Neurophysiol. 28, 48 (1970).
[Crossref] [PubMed]

M. R. Harter, Vision Res. 10, 1365 (1970).
[Crossref] [PubMed]

Hubel, D. H.

T. N. Wiesel and D. H. Hubel, J. Neurophysiol. 29, 1115 (1966).
[PubMed]

Johnson, E. P.

E. P. Johnson, L. A. Riggs, and A. M. L. Schick, Clin. Electroretinogr. Vision Res. Suppl. 1, 75 (1966).

L. A. Riggs, E. P. Johnson, and A. M. L. Schick, J. Opt. Soc. Am. 56, 1621 (1966).
[Crossref]

Maffei, L.

F. W. Campbell and L. Maffei, J. Physiol. (Lond.) 207, 635 (1970).

Marsetta, R.

Miller, R. F.

R. F. Miller and J. E. Dowling, J. Neurophysiol. 33, 323 (1970).
[PubMed]

Rémond, A.

A. Rémond, Rev. Neurologigue 113, 193 (1965).

Riggs, L. A.

E. P. Johnson, L. A. Riggs, and A. M. L. Schick, Clin. Electroretinogr. Vision Res. Suppl. 1, 75 (1966).

L. A. Riggs, E. P. Johnson, and A. M. L. Schick, J. Opt. Soc. Am. 56, 1621 (1966).
[Crossref]

Ripps, H.

R. D. Devoe, H. Ripps, and H. G. Vaughan, Vision Res. 8, 135 (1968).
[Crossref] [PubMed]

Robson, J. G.

F. W. Campbell and J. G. Robson, J. Physiol. (Lond.) 197, 551 (1968).

Schick, A. M. L.

Scott, D. F.

D. F. Scott and R. G. Bickford, Science 155, 101 (1967).
[Crossref] [PubMed]

Spekreijse, H.

H. Spekreijse, Thesis (University of Amsterdam, 1966).

Vaughan, H. G.

R. D. Devoe, H. Ripps, and H. G. Vaughan, Vision Res. 8, 135 (1968).
[Crossref] [PubMed]

White, C. T.

M. R. Harter and C. T. White, Electroencephalogr. Clin. Neurophysiol. 28, 48 (1970).
[Crossref] [PubMed]

Wiesel, T. N.

T. N. Wiesel and D. H. Hubel, J. Neurophysiol. 29, 1115 (1966).
[PubMed]

Behav. Res. Meth. Instrum. (1)

J. C. Armington, Behav. Res. Meth. Instrum. 4, 61 (1972).
[Crossref]

Clin. Electroretinogr. Vision Res. Suppl. (1)

E. P. Johnson, L. A. Riggs, and A. M. L. Schick, Clin. Electroretinogr. Vision Res. Suppl. 1, 75 (1966).

Electroencephalogr. Clin. Neurophysiol. (2)

J. S. Barlow and L. Ciganek, Electroencephalogr. Clin. Neurophysiol. 26, 183 (1969).
[Crossref] [PubMed]

M. R. Harter and C. T. White, Electroencephalogr. Clin. Neurophysiol. 28, 48 (1970).
[Crossref] [PubMed]

J. Neurophysiol. (2)

T. N. Wiesel and D. H. Hubel, J. Neurophysiol. 29, 1115 (1966).
[PubMed]

R. F. Miller and J. E. Dowling, J. Neurophysiol. 33, 323 (1970).
[PubMed]

J. Opt. Soc. Am. (3)

J. Physiol. (Lond.) (3)

F. W. Campbell and L. Maffei, J. Physiol. (Lond.) 207, 635 (1970).

C. Blakemore and F. W. Campbell, J. Physiol. (Lond.) 203, 237 (1969).

F. W. Campbell and J. G. Robson, J. Physiol. (Lond.) 197, 551 (1968).

Rev. Neurologigue (1)

A. Rémond, Rev. Neurologigue 113, 193 (1965).

Science (1)

D. F. Scott and R. G. Bickford, Science 155, 101 (1967).
[Crossref] [PubMed]

Vision Res. (3)

M. R. Harter, Vision Res. 10, 1365 (1970).
[Crossref] [PubMed]

J. C. Armington, Vision Res. 8, 263 (1968).
[Crossref] [PubMed]

R. D. Devoe, H. Ripps, and H. G. Vaughan, Vision Res. 8, 135 (1968).
[Crossref] [PubMed]

Other (3)

H. Spekreijse, Thesis (University of Amsterdam, 1966).

T. N. Cornsweet, Visual Perception (Academic, New York, 1970), Ch. 12.

Achromatic contrast was specified as a percent by computing C = (L1 − L2)/(L1 + L2) × 100 where L1 is the maximum luminance of a stripe in the grating and L2 is the minimum luminance of a stripe.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Apparatus. Stimulator (left), eye-movement-detection system (center), and electrophysiological recording system (right). FL, tungsten-filament lamp; HF, heat filter; NFW, neutral-density-filter wheel; L, lens; AS, aperture stop; G, grating; FS, field stop; M, mirror; PC, photoelectric cell; Amp, amplifier; S1, rectangular stop; R, pinion on rack with fine horizontal and vertical adjustments.

Fig. 2
Fig. 2

Sample ERG’s and VECP’s recorded during procedure 2. Each waveform represents an average of 100 responses at each of the stimulus-field diameters, indicated in degrees of visual angle. The sampling time and measurements taken for ERG and VECP responses are indicated below the sample responses. Electrophysiological activity was recorded from 50 ms prior to the eye movement trigger pulse to 250 ms after the pulse.

Fig. 3
Fig. 3

Procedure 1. Effect of fractional-stripe saccades on response amplitude for JCA. Filled circles, b-wave amplitude; filled squares, afterpotential amplitude; filled triangles, VECP amplitude. Each symbol represents the mean of average responses obtained in three separate recording sessions. The stimulus configuration appears in the upper left-hand corner of the figure. The arrow at the edge of the enlarged central opaque stripe indicates the initial fixation point of the subject. On instruction, he moved his eye abruptly a specified distance horizontally across the stripe to a fixation point and then back to the initial fixation.

Fig. 4
Fig. 4

Procedure 2. Effects of increasing stimulus diameter on the b-wave and afterpotential amplitudes (top), and on the VECP amplitude (bottom). Filled symbols with dashed lines are data from JCA. Open symbols with solid lines refer to data from LF. Circles, b-wave amplitude; squares, afterpotential amplitude; triangles, VECP amplitude.

Fig. 5
Fig. 5

Procedure 3. VECP amplitude vs pattern spatial frequency. Filled triangles, responses from JCA; open triangles, responses from LF. Maximum response amplitudes were produced with the 2.3 cycles/deg pattern for both subjects.

Fig. 6
Fig. 6

Comparison of ERG amplitude vs number of cones undergoing illuminance change in procedures 1 and 2. Open symbols with solid lines, procedure 1; filled symbols with dashed lines, procedure 2; circles, b-wave amplitude; squares, afterpotential measurements.

Fig. 7
Fig. 7

Comparison of VECP’s obtained in procedure 1 (response amplitude vs percent stripe saccade) and procedure 2 (response amplitude vs relative stimulus diameter). Open triangles with solid lines, VECP’s recorded in procedure 1; filled triangles with dashed lines, VECP’s from procedure 2.