Abstract

The basic laws of radiometry are generalized to fields generated by a two-dimensional stationary source of any state of coherence. Important in this analysis is the concept of the generalized radiance function, introduced by Walther in 1968. The concepts of generalized radiant emittance and of generalized radiant intensity are introduced and it is shown how all these quantities may be expressed in terms of coherence functions of the source. Both the generalized radiance of Walther and the generalized radiant emittance may take on negative values, indicating that these quantities have, in general, a less-direct physical meaning than have the corresponding quantities of traditional radiometry (which presumably represents the incoherent limit of the present theory). The generalized radiant intensity is, however, always found to be non-negative and, just as in the incoherent limit, represents the angular distribution of the energy flux in the far zone.

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription