Abstract

An expression is derived for the apparent log-amplitude variance that would result experimentally from the use of a high-frequency cutoff ν<sub><i>e</i></sub> in the electronic detection system. It is shown, for the Kolmogorov spectrum and in the saturation regime, that the apparent log-amplitude variance decreases asymptotically as σ<sub><i>T</i></sub><sup>-2/5</sup> where σ<sub><i>T</i></sub><sup>2</sup> is the log-amplitude variance obtained from the perturbation theory. Furthermore, it is shown that theories that suppress spatial frequencies of the order 1/ρ<sub>0</sub>(<i>L</i>), where ρ<sub>0</sub>(<i>L</i>) is the lateral coherence of the wave at propagation distance <i>L</i>, are equivalent to suppressing high temporal frequencies in the time domain. Thus, such theories will result in a predicted log-amplitude variance that decreases asymptotically with increasing values of σ<sub><i>T</i></sub><sup>2</sup>.

PDF Article

References

  • View by:
  • |
  • |

  1. H. T. Yura, J. Opt. Soc. Am. 64, 357 (1974).
  2. V. I. Tatarskii, Wave Propagation in a Turbulent Medium (McGraw-Hill, New York, 1961); V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (National Technical Information Service, U. S. Dept. of Commerce, Springfield, Va., 1971).
  3. S. F. Clifford, G. R. Ochs, and R. S. Lawrence, J. Opt. Soc. Am. 64, 148 (1974).
  4. M. E. Gracheva, A. S. Gurvich, S. S. Kashkarov, and V. V. Pokasov, Similarity Correlations and Their Experimental Verifications in the Case of Strong Intensity Fluctuations (Akademia Nauk SSR, Otdelenie Oceanalogii Fiziki Atmosfery i Geografli, Russian Preprint, Moscow, 1973). English translation available from The Aerospace Corp., Library Services, Literature Research Group, P.O. Box 92957, Los Angeles, Calif. 90009, Translation No. LRG-73-T-28.
  5. H. T. Yura, J. Opt. Soc. Am. 64, 59 (1974).
  6. R. F. Lutomirski and H. T. Yura, J. Opt. Soc. Am. 61, 482 (1971).
  7. R. S. Lawrence and J. W. Strohbehn, Proc. IEEE 58, 1523 (1970).
  8. The constant appearing in Eq. (27), as determined analytically from Eqs. (24) and (26), is equal to 3(2)1/6/π≅1.07, while the constant, as determined numerically from Eqs. (22) and (25), is approximately equal to 1.14.
  9. Note that for σT2 less than, equal to, and greater than unity, ρ0(L) is greater than, equal to, and less than (L/k)½, respectively.
  10. D. A. de Wolf, J. Opt. Soc. Am. 64, 360 (1974).

Clifford, S. F.

S. F. Clifford, G. R. Ochs, and R. S. Lawrence, J. Opt. Soc. Am. 64, 148 (1974).

de Wolf, D. A.

D. A. de Wolf, J. Opt. Soc. Am. 64, 360 (1974).

Gracheva, M. E.

M. E. Gracheva, A. S. Gurvich, S. S. Kashkarov, and V. V. Pokasov, Similarity Correlations and Their Experimental Verifications in the Case of Strong Intensity Fluctuations (Akademia Nauk SSR, Otdelenie Oceanalogii Fiziki Atmosfery i Geografli, Russian Preprint, Moscow, 1973). English translation available from The Aerospace Corp., Library Services, Literature Research Group, P.O. Box 92957, Los Angeles, Calif. 90009, Translation No. LRG-73-T-28.

Gurvich, A. S.

M. E. Gracheva, A. S. Gurvich, S. S. Kashkarov, and V. V. Pokasov, Similarity Correlations and Their Experimental Verifications in the Case of Strong Intensity Fluctuations (Akademia Nauk SSR, Otdelenie Oceanalogii Fiziki Atmosfery i Geografli, Russian Preprint, Moscow, 1973). English translation available from The Aerospace Corp., Library Services, Literature Research Group, P.O. Box 92957, Los Angeles, Calif. 90009, Translation No. LRG-73-T-28.

Kashkarov, S. S.

M. E. Gracheva, A. S. Gurvich, S. S. Kashkarov, and V. V. Pokasov, Similarity Correlations and Their Experimental Verifications in the Case of Strong Intensity Fluctuations (Akademia Nauk SSR, Otdelenie Oceanalogii Fiziki Atmosfery i Geografli, Russian Preprint, Moscow, 1973). English translation available from The Aerospace Corp., Library Services, Literature Research Group, P.O. Box 92957, Los Angeles, Calif. 90009, Translation No. LRG-73-T-28.

Lawrence, R. S.

S. F. Clifford, G. R. Ochs, and R. S. Lawrence, J. Opt. Soc. Am. 64, 148 (1974).

R. S. Lawrence and J. W. Strohbehn, Proc. IEEE 58, 1523 (1970).

Lutomirski, R. F.

R. F. Lutomirski and H. T. Yura, J. Opt. Soc. Am. 61, 482 (1971).

Ochs, G. R.

S. F. Clifford, G. R. Ochs, and R. S. Lawrence, J. Opt. Soc. Am. 64, 148 (1974).

Pokasov, V. V.

M. E. Gracheva, A. S. Gurvich, S. S. Kashkarov, and V. V. Pokasov, Similarity Correlations and Their Experimental Verifications in the Case of Strong Intensity Fluctuations (Akademia Nauk SSR, Otdelenie Oceanalogii Fiziki Atmosfery i Geografli, Russian Preprint, Moscow, 1973). English translation available from The Aerospace Corp., Library Services, Literature Research Group, P.O. Box 92957, Los Angeles, Calif. 90009, Translation No. LRG-73-T-28.

Strohbehn, J. W.

R. S. Lawrence and J. W. Strohbehn, Proc. IEEE 58, 1523 (1970).

Tatarskii, V. I.

V. I. Tatarskii, Wave Propagation in a Turbulent Medium (McGraw-Hill, New York, 1961); V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (National Technical Information Service, U. S. Dept. of Commerce, Springfield, Va., 1971).

Yura, H. T.

R. F. Lutomirski and H. T. Yura, J. Opt. Soc. Am. 61, 482 (1971).

H. T. Yura, J. Opt. Soc. Am. 64, 59 (1974).

H. T. Yura, J. Opt. Soc. Am. 64, 357 (1974).

Other (10)

H. T. Yura, J. Opt. Soc. Am. 64, 357 (1974).

V. I. Tatarskii, Wave Propagation in a Turbulent Medium (McGraw-Hill, New York, 1961); V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (National Technical Information Service, U. S. Dept. of Commerce, Springfield, Va., 1971).

S. F. Clifford, G. R. Ochs, and R. S. Lawrence, J. Opt. Soc. Am. 64, 148 (1974).

M. E. Gracheva, A. S. Gurvich, S. S. Kashkarov, and V. V. Pokasov, Similarity Correlations and Their Experimental Verifications in the Case of Strong Intensity Fluctuations (Akademia Nauk SSR, Otdelenie Oceanalogii Fiziki Atmosfery i Geografli, Russian Preprint, Moscow, 1973). English translation available from The Aerospace Corp., Library Services, Literature Research Group, P.O. Box 92957, Los Angeles, Calif. 90009, Translation No. LRG-73-T-28.

H. T. Yura, J. Opt. Soc. Am. 64, 59 (1974).

R. F. Lutomirski and H. T. Yura, J. Opt. Soc. Am. 61, 482 (1971).

R. S. Lawrence and J. W. Strohbehn, Proc. IEEE 58, 1523 (1970).

The constant appearing in Eq. (27), as determined analytically from Eqs. (24) and (26), is equal to 3(2)1/6/π≅1.07, while the constant, as determined numerically from Eqs. (22) and (25), is approximately equal to 1.14.

Note that for σT2 less than, equal to, and greater than unity, ρ0(L) is greater than, equal to, and less than (L/k)½, respectively.

D. A. de Wolf, J. Opt. Soc. Am. 64, 360 (1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.