Abstract

Light propagation along the helical axis of cholesteric liquid crystals, whose structure has been distorted by a magnetic or electric field perpendicular to the helix axis, is theoretically investigated. The solutions show several reflection bands whose centers are given by the Bragg condition mλm = 2S n (m is an integer, S is the period of the distorted structure, and n is the average refractive index of the material). The bands with m ≥ 2 consist of three subbands, each characterized by the dependence of the reflection on the polarization of the incident beam. Thus, for example, an incident beam linearly polarized in the direction of the distorting field will be reflected at only two of these subbands. Except for very strong applied fields, the band m = 1 is composed of two subbands only. Outside the reflection bands, the modes of propagation are orthogonal linear polarizations.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (63)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription