Abstract

Far-infrared transmission spectra of dysprosium and terbium iron garnet were measured between 10 and 150 cm−1 at temperatures less than 20 K by Fourier-transform spectroscopy. The temperature and magnetic-field dependence of the transmission spectrum of dysprosium iron garnet was also observed. For dysprosium iron garnet, absorption lines at 22.6, 59.5, 44.0, and 65 cm−1 were identified as low-lying electronic levels. Magnetic resonances at 13.5, 17.0, and 28.0 cm−1 and phonon absorption lines at 81, 107, 112, and 145 cm−1 were found. For terbium iron garnet, two electronic lines at 36 and 68.5 cm−1 and four phonon lines at 80.5, 108, 112, and 145 cm−1 were found.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Dillon, J. Phys. Radium 20, 374 (1959).
    [Crossref]
  2. A. J. Sievers and M. Tinkham, Phys. Rev. 129, 1995 (1963).
    [Crossref]
  3. P. L. Richards and J. P. Remeika, J. Appl. Phys. 37, 1310 (1966).
    [Crossref]
  4. N. T. McDevitt, J. Opt. Soc. Am. 59, 1240 (1969).
    [Crossref]
  5. L. Neel, R. Pauthenet, and B. Dreyfus, Progress in Low Temperature Physics, 4, edited by C. J. Gorter (North–Holland, Amsterdam, 1964), p. 344.
    [Crossref]
  6. M. Tinkham, Phys. Rev. 124, 311 (1961).
    [Crossref]
  7. E. E. Russell and E. E. Bell, Infrared Phys. 6, 75 (1966).
    [Crossref]
  8. Supplied by Hitachi Ltd., Tokyo, Japan.
  9. Supplied by Molectron, Sunnyvale, Calif.
  10. J. Yamamoto and H. Yoshinaga, Jap. J. Appl. Phys. 7, 498 (1968).
    [Crossref]
  11. The computer analysis was performed by E. E. Bell.
  12. B. T. Smith, Far-Infrared Spectra of Some Orthoferrites Thesis (The Ohio State University, 1973) (Xerox University Microfilms, Ann Arbor, Mich., Abstract No. 2254-B; Order No. 73-26 912).
  13. A. B. Harris and H. Meyer, Phys. Rev. 127, 101 (1962).
    [Crossref]
  14. T. D. Knight and D. L. Huber, J. Appl. Phys. 39, 1069 (1968).
    [Crossref]

1969 (1)

1968 (2)

J. Yamamoto and H. Yoshinaga, Jap. J. Appl. Phys. 7, 498 (1968).
[Crossref]

T. D. Knight and D. L. Huber, J. Appl. Phys. 39, 1069 (1968).
[Crossref]

1966 (2)

P. L. Richards and J. P. Remeika, J. Appl. Phys. 37, 1310 (1966).
[Crossref]

E. E. Russell and E. E. Bell, Infrared Phys. 6, 75 (1966).
[Crossref]

1963 (1)

A. J. Sievers and M. Tinkham, Phys. Rev. 129, 1995 (1963).
[Crossref]

1962 (1)

A. B. Harris and H. Meyer, Phys. Rev. 127, 101 (1962).
[Crossref]

1961 (1)

M. Tinkham, Phys. Rev. 124, 311 (1961).
[Crossref]

1959 (1)

J. F. Dillon, J. Phys. Radium 20, 374 (1959).
[Crossref]

Bell, E. E.

E. E. Russell and E. E. Bell, Infrared Phys. 6, 75 (1966).
[Crossref]

Dillon, J. F.

J. F. Dillon, J. Phys. Radium 20, 374 (1959).
[Crossref]

Dreyfus, B.

L. Neel, R. Pauthenet, and B. Dreyfus, Progress in Low Temperature Physics, 4, edited by C. J. Gorter (North–Holland, Amsterdam, 1964), p. 344.
[Crossref]

Harris, A. B.

A. B. Harris and H. Meyer, Phys. Rev. 127, 101 (1962).
[Crossref]

Huber, D. L.

T. D. Knight and D. L. Huber, J. Appl. Phys. 39, 1069 (1968).
[Crossref]

Knight, T. D.

T. D. Knight and D. L. Huber, J. Appl. Phys. 39, 1069 (1968).
[Crossref]

McDevitt, N. T.

Meyer, H.

A. B. Harris and H. Meyer, Phys. Rev. 127, 101 (1962).
[Crossref]

Neel, L.

L. Neel, R. Pauthenet, and B. Dreyfus, Progress in Low Temperature Physics, 4, edited by C. J. Gorter (North–Holland, Amsterdam, 1964), p. 344.
[Crossref]

Pauthenet, R.

L. Neel, R. Pauthenet, and B. Dreyfus, Progress in Low Temperature Physics, 4, edited by C. J. Gorter (North–Holland, Amsterdam, 1964), p. 344.
[Crossref]

Remeika, J. P.

P. L. Richards and J. P. Remeika, J. Appl. Phys. 37, 1310 (1966).
[Crossref]

Richards, P. L.

P. L. Richards and J. P. Remeika, J. Appl. Phys. 37, 1310 (1966).
[Crossref]

Russell, E. E.

E. E. Russell and E. E. Bell, Infrared Phys. 6, 75 (1966).
[Crossref]

Sievers, A. J.

A. J. Sievers and M. Tinkham, Phys. Rev. 129, 1995 (1963).
[Crossref]

Smith, B. T.

B. T. Smith, Far-Infrared Spectra of Some Orthoferrites Thesis (The Ohio State University, 1973) (Xerox University Microfilms, Ann Arbor, Mich., Abstract No. 2254-B; Order No. 73-26 912).

Tinkham, M.

A. J. Sievers and M. Tinkham, Phys. Rev. 129, 1995 (1963).
[Crossref]

M. Tinkham, Phys. Rev. 124, 311 (1961).
[Crossref]

Yamamoto, J.

J. Yamamoto and H. Yoshinaga, Jap. J. Appl. Phys. 7, 498 (1968).
[Crossref]

Yoshinaga, H.

J. Yamamoto and H. Yoshinaga, Jap. J. Appl. Phys. 7, 498 (1968).
[Crossref]

Infrared Phys. (1)

E. E. Russell and E. E. Bell, Infrared Phys. 6, 75 (1966).
[Crossref]

J. Appl. Phys. (2)

P. L. Richards and J. P. Remeika, J. Appl. Phys. 37, 1310 (1966).
[Crossref]

T. D. Knight and D. L. Huber, J. Appl. Phys. 39, 1069 (1968).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Radium (1)

J. F. Dillon, J. Phys. Radium 20, 374 (1959).
[Crossref]

Jap. J. Appl. Phys. (1)

J. Yamamoto and H. Yoshinaga, Jap. J. Appl. Phys. 7, 498 (1968).
[Crossref]

Phys. Rev. (3)

A. J. Sievers and M. Tinkham, Phys. Rev. 129, 1995 (1963).
[Crossref]

M. Tinkham, Phys. Rev. 124, 311 (1961).
[Crossref]

A. B. Harris and H. Meyer, Phys. Rev. 127, 101 (1962).
[Crossref]

Other (5)

L. Neel, R. Pauthenet, and B. Dreyfus, Progress in Low Temperature Physics, 4, edited by C. J. Gorter (North–Holland, Amsterdam, 1964), p. 344.
[Crossref]

The computer analysis was performed by E. E. Bell.

B. T. Smith, Far-Infrared Spectra of Some Orthoferrites Thesis (The Ohio State University, 1973) (Xerox University Microfilms, Ann Arbor, Mich., Abstract No. 2254-B; Order No. 73-26 912).

Supplied by Hitachi Ltd., Tokyo, Japan.

Supplied by Molectron, Sunnyvale, Calif.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Detector response of the InSb photoconductor (solid line) and the Si bolometer (dashed line). Numbers in the figure indicate the line constant, in lines/mm, of the different Ni-mesh beam splitters. The Ge bolometer has a spectral sensitivity similar to the Si bolometer.

Fig. 2
Fig. 2

Transmission spectrum of DyIG at 4.2 K. The sample was wedged and had an average thickness of 0.3 mm.

Fig. 3
Fig. 3

Transmission spectrum of DyIG powder in a polyethylene sheet. The sample was 0.5 mm thick and 12 mm in diameter and consisted of 60 mg of garnet powder in 125 mg of polyethylene. The thinner sample had 42 mg of garnet powder in 125 mg of polyethylene.

Fig. 4
Fig. 4

Magnetic-field dependence of absorption-line position in DyIG. Uncertainty of the line position is ±0.5 cm−1.

Fig. 5
Fig. 5

Temperature dependence of the absorption-line position in DyIG.

Fig. 6
Fig. 6

Transmission spectrum of TbIG at 4.2 K. The sample was wedged and had an average thickness of 0.3 mm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ω EXR = ω e + ( λ ω e ) ( γ 1 2 M 2 - γ 2 2 M 1 ) H 0 + ( λ ω e ) ( γ 1 2 M 2 H 1 + γ 2 2 M 1 H 2 ) ,
ω FMR = - γ off ( H 0 + H eff a ) .
E 1 = 24.7 ± 0.7 cm - 1 , g 1 = 1 E 2 = 60 ± 3 cm - 1 , g 2 = 1             for site 1
E 1 = 40.1 ± 1.0 cm - 1 , g 1 = 1 E 2 = 65 ± 3 cm - 1 , g 2 = 1             for site 2.
E 1 = 36 ± 4 cm - 1 for site 1 , E 2 = 50 ± 6 cm - 1 for site 2.