Abstract

White and Straley have reported room-temperature optical constants, α, κ, and 2 for AgCl that exhibit negative, unphysical dips at the band edge. Because Morrison also obtained such behavior for InAs, InSb, and GaAs, we have studied possible sources of this anomaly. An artifact of the experimental reflectance data near this energy is found to be responsible. No defect in the Kramers–Kronig transform or its use is implied, contrary to some suggestions. The corrected optical constants of AgCl were modified by ~10% up to 5 eV, whereas at higher energies they were barely affected. Thus Kramers-Kronig-deduced optical constants that exhibit unusual structure are not affected by this structure at other energies. The new AgCl results are presented, and assignments are briefly discussed.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. White and J. W. Straley, J. Opt. Soc. Am. 58, 759 (1968).
    [Crossref]
  2. R. E. Morrison, Phys. Rev. 124, 1314 (1961).
    [Crossref]
  3. R. S. Bauer, Ph.D. dissertation (Stanford Univ., Stanford, Calif., 1970), pp. 39–43, 245–253, 273–277 (Xerox University Microfilms, Ann Arbor, Mich., Order No. 71–19646).
  4. E. L. Kreiger, D. J. Olechna, and D. S. Story, G. E. Technical Information Series No. 63-RL-3458G (1963).
  5. T. S. Moss, Optical Properties of Semiconductors (Butterworths, London, 1959), Ch. 2 and App. B.
  6. J. J. White, Ph.D. dissertation (Univ. of North Carolina, Chapel Hill, N. C., 1965), pp. 12–22, 89–106 (Xerox University Microfilms, Ann Arbor, Mich., Order No. 65–14 402).
  7. J. J. White, J. Opt. Soc. Am. 62, 212 (1972).
    [Crossref]
  8. The Stanford program for the Kramers–Kronig integral was written in Algol 60 by J. L. Shay, based on Ref. 4 and translated into fortran iv by D. H. Seib. For this work, it was modified to obtain the high-energy extrapolation that gives a least-squares-fit to experiment at low energies.
  9. T. M. Donovan, W. E. Spicer, J. M. Bennett, and E. J. Ashley, Phys. Rev. B 2, 397 (1970); T. M. Donovan, Ph.D. dissertation (Stanford Univ., Stanford, Calif., 1970) (Xerox University Microfilms, Ann Arbor, Mich., Order No. 71–12 887).
    [Crossref]
  10. P. O. Nilsson and L. Munkby, Phys. Kondens. Matrie 10, 290 (1969).
  11. P. L. Hartman and R. C. Merrill, J. Opt. Soc. Am. 51, 168 (1961).
    [Crossref]
  12. F. Moser and F. Urbach, Phys. Rev. 102, 1519 (1956).
    [Crossref]
  13. Y. Okamoto, Nachr. Akad. Wiss. Gottingen Math. Physik. KL. IIa,  14, 275 (1956); P. D. Millman, Masters dissertation (Cornell University, 1953) and cited references; and P. G. Aline, Phys. Rev. 105, 406 (1957).
    [Crossref]
  14. N. J. Carrera and F. C. Brown, Phys. Rev. B 4, 3651 (1971).
    [Crossref]
  15. P. M. Scop, Phys. Rev. 139, A934 (1965).
    [Crossref]
  16. F. Bassani, R. S. Knox, and W. B. Fowler, Phys. Rev. 137, A1217 (1965).
    [Crossref]
  17. O. Aita, I. Nagakura, and T. Sagawa, J. Phys. Soc. Jap. 30, 1414 (1971); S. Sato, M. Watanabe, Y. Iguchi, S. Nakai, Y. Nakamura, and T. Sagawa, J. Phys. Soc. Jap. 33, 1638 (1972).
    [Crossref]
  18. W. B. Fowler, Phys. Stat. Sol. B 52, 591 (1972).
    [Crossref]
  19. R. K. Ahrenkiel, J. Opt. Soc. Am. 61, 1651 (1971).
    [Crossref]
  20. D. L. Decker and J. L. Stanford, J. Opt. Soc. Am. 61, 679 (1971).
  21. H. Schröter, Z. Phys. 67, 24 (1931).
    [Crossref]

1972 (2)

W. B. Fowler, Phys. Stat. Sol. B 52, 591 (1972).
[Crossref]

J. J. White, J. Opt. Soc. Am. 62, 212 (1972).
[Crossref]

1971 (4)

R. K. Ahrenkiel, J. Opt. Soc. Am. 61, 1651 (1971).
[Crossref]

D. L. Decker and J. L. Stanford, J. Opt. Soc. Am. 61, 679 (1971).

O. Aita, I. Nagakura, and T. Sagawa, J. Phys. Soc. Jap. 30, 1414 (1971); S. Sato, M. Watanabe, Y. Iguchi, S. Nakai, Y. Nakamura, and T. Sagawa, J. Phys. Soc. Jap. 33, 1638 (1972).
[Crossref]

N. J. Carrera and F. C. Brown, Phys. Rev. B 4, 3651 (1971).
[Crossref]

1970 (1)

T. M. Donovan, W. E. Spicer, J. M. Bennett, and E. J. Ashley, Phys. Rev. B 2, 397 (1970); T. M. Donovan, Ph.D. dissertation (Stanford Univ., Stanford, Calif., 1970) (Xerox University Microfilms, Ann Arbor, Mich., Order No. 71–12 887).
[Crossref]

1969 (1)

P. O. Nilsson and L. Munkby, Phys. Kondens. Matrie 10, 290 (1969).

1968 (1)

1965 (2)

P. M. Scop, Phys. Rev. 139, A934 (1965).
[Crossref]

F. Bassani, R. S. Knox, and W. B. Fowler, Phys. Rev. 137, A1217 (1965).
[Crossref]

1963 (1)

E. L. Kreiger, D. J. Olechna, and D. S. Story, G. E. Technical Information Series No. 63-RL-3458G (1963).

1961 (2)

1956 (2)

F. Moser and F. Urbach, Phys. Rev. 102, 1519 (1956).
[Crossref]

Y. Okamoto, Nachr. Akad. Wiss. Gottingen Math. Physik. KL. IIa,  14, 275 (1956); P. D. Millman, Masters dissertation (Cornell University, 1953) and cited references; and P. G. Aline, Phys. Rev. 105, 406 (1957).
[Crossref]

1931 (1)

H. Schröter, Z. Phys. 67, 24 (1931).
[Crossref]

Ahrenkiel, R. K.

Aita, O.

O. Aita, I. Nagakura, and T. Sagawa, J. Phys. Soc. Jap. 30, 1414 (1971); S. Sato, M. Watanabe, Y. Iguchi, S. Nakai, Y. Nakamura, and T. Sagawa, J. Phys. Soc. Jap. 33, 1638 (1972).
[Crossref]

Ashley, E. J.

T. M. Donovan, W. E. Spicer, J. M. Bennett, and E. J. Ashley, Phys. Rev. B 2, 397 (1970); T. M. Donovan, Ph.D. dissertation (Stanford Univ., Stanford, Calif., 1970) (Xerox University Microfilms, Ann Arbor, Mich., Order No. 71–12 887).
[Crossref]

Bassani, F.

F. Bassani, R. S. Knox, and W. B. Fowler, Phys. Rev. 137, A1217 (1965).
[Crossref]

Bauer, R. S.

R. S. Bauer, Ph.D. dissertation (Stanford Univ., Stanford, Calif., 1970), pp. 39–43, 245–253, 273–277 (Xerox University Microfilms, Ann Arbor, Mich., Order No. 71–19646).

Bennett, J. M.

T. M. Donovan, W. E. Spicer, J. M. Bennett, and E. J. Ashley, Phys. Rev. B 2, 397 (1970); T. M. Donovan, Ph.D. dissertation (Stanford Univ., Stanford, Calif., 1970) (Xerox University Microfilms, Ann Arbor, Mich., Order No. 71–12 887).
[Crossref]

Brown, F. C.

N. J. Carrera and F. C. Brown, Phys. Rev. B 4, 3651 (1971).
[Crossref]

Carrera, N. J.

N. J. Carrera and F. C. Brown, Phys. Rev. B 4, 3651 (1971).
[Crossref]

Decker, D. L.

D. L. Decker and J. L. Stanford, J. Opt. Soc. Am. 61, 679 (1971).

Donovan, T. M.

T. M. Donovan, W. E. Spicer, J. M. Bennett, and E. J. Ashley, Phys. Rev. B 2, 397 (1970); T. M. Donovan, Ph.D. dissertation (Stanford Univ., Stanford, Calif., 1970) (Xerox University Microfilms, Ann Arbor, Mich., Order No. 71–12 887).
[Crossref]

Fowler, W. B.

W. B. Fowler, Phys. Stat. Sol. B 52, 591 (1972).
[Crossref]

F. Bassani, R. S. Knox, and W. B. Fowler, Phys. Rev. 137, A1217 (1965).
[Crossref]

Hartman, P. L.

Knox, R. S.

F. Bassani, R. S. Knox, and W. B. Fowler, Phys. Rev. 137, A1217 (1965).
[Crossref]

Kreiger, E. L.

E. L. Kreiger, D. J. Olechna, and D. S. Story, G. E. Technical Information Series No. 63-RL-3458G (1963).

Merrill, R. C.

Morrison, R. E.

R. E. Morrison, Phys. Rev. 124, 1314 (1961).
[Crossref]

Moser, F.

F. Moser and F. Urbach, Phys. Rev. 102, 1519 (1956).
[Crossref]

Moss, T. S.

T. S. Moss, Optical Properties of Semiconductors (Butterworths, London, 1959), Ch. 2 and App. B.

Munkby, L.

P. O. Nilsson and L. Munkby, Phys. Kondens. Matrie 10, 290 (1969).

Nagakura, I.

O. Aita, I. Nagakura, and T. Sagawa, J. Phys. Soc. Jap. 30, 1414 (1971); S. Sato, M. Watanabe, Y. Iguchi, S. Nakai, Y. Nakamura, and T. Sagawa, J. Phys. Soc. Jap. 33, 1638 (1972).
[Crossref]

Nilsson, P. O.

P. O. Nilsson and L. Munkby, Phys. Kondens. Matrie 10, 290 (1969).

Okamoto, Y.

Y. Okamoto, Nachr. Akad. Wiss. Gottingen Math. Physik. KL. IIa,  14, 275 (1956); P. D. Millman, Masters dissertation (Cornell University, 1953) and cited references; and P. G. Aline, Phys. Rev. 105, 406 (1957).
[Crossref]

Olechna, D. J.

E. L. Kreiger, D. J. Olechna, and D. S. Story, G. E. Technical Information Series No. 63-RL-3458G (1963).

Sagawa, T.

O. Aita, I. Nagakura, and T. Sagawa, J. Phys. Soc. Jap. 30, 1414 (1971); S. Sato, M. Watanabe, Y. Iguchi, S. Nakai, Y. Nakamura, and T. Sagawa, J. Phys. Soc. Jap. 33, 1638 (1972).
[Crossref]

Schröter, H.

H. Schröter, Z. Phys. 67, 24 (1931).
[Crossref]

Scop, P. M.

P. M. Scop, Phys. Rev. 139, A934 (1965).
[Crossref]

Spicer, W. E.

T. M. Donovan, W. E. Spicer, J. M. Bennett, and E. J. Ashley, Phys. Rev. B 2, 397 (1970); T. M. Donovan, Ph.D. dissertation (Stanford Univ., Stanford, Calif., 1970) (Xerox University Microfilms, Ann Arbor, Mich., Order No. 71–12 887).
[Crossref]

Stanford, J. L.

D. L. Decker and J. L. Stanford, J. Opt. Soc. Am. 61, 679 (1971).

Story, D. S.

E. L. Kreiger, D. J. Olechna, and D. S. Story, G. E. Technical Information Series No. 63-RL-3458G (1963).

Straley, J. W.

Urbach, F.

F. Moser and F. Urbach, Phys. Rev. 102, 1519 (1956).
[Crossref]

White, J. J.

J. J. White, J. Opt. Soc. Am. 62, 212 (1972).
[Crossref]

J. J. White and J. W. Straley, J. Opt. Soc. Am. 58, 759 (1968).
[Crossref]

J. J. White, Ph.D. dissertation (Univ. of North Carolina, Chapel Hill, N. C., 1965), pp. 12–22, 89–106 (Xerox University Microfilms, Ann Arbor, Mich., Order No. 65–14 402).

G. E. Technical Information Series No. 63-RL-3458G (1)

E. L. Kreiger, D. J. Olechna, and D. S. Story, G. E. Technical Information Series No. 63-RL-3458G (1963).

J. Opt. Soc. Am. (5)

J. Phys. Soc. Jap. (1)

O. Aita, I. Nagakura, and T. Sagawa, J. Phys. Soc. Jap. 30, 1414 (1971); S. Sato, M. Watanabe, Y. Iguchi, S. Nakai, Y. Nakamura, and T. Sagawa, J. Phys. Soc. Jap. 33, 1638 (1972).
[Crossref]

Nachr. Akad. Wiss. Gottingen Math. Physik. KL. IIa (1)

Y. Okamoto, Nachr. Akad. Wiss. Gottingen Math. Physik. KL. IIa,  14, 275 (1956); P. D. Millman, Masters dissertation (Cornell University, 1953) and cited references; and P. G. Aline, Phys. Rev. 105, 406 (1957).
[Crossref]

Phys. Kondens. Matrie (1)

P. O. Nilsson and L. Munkby, Phys. Kondens. Matrie 10, 290 (1969).

Phys. Rev. (4)

R. E. Morrison, Phys. Rev. 124, 1314 (1961).
[Crossref]

F. Moser and F. Urbach, Phys. Rev. 102, 1519 (1956).
[Crossref]

P. M. Scop, Phys. Rev. 139, A934 (1965).
[Crossref]

F. Bassani, R. S. Knox, and W. B. Fowler, Phys. Rev. 137, A1217 (1965).
[Crossref]

Phys. Rev. B (2)

N. J. Carrera and F. C. Brown, Phys. Rev. B 4, 3651 (1971).
[Crossref]

T. M. Donovan, W. E. Spicer, J. M. Bennett, and E. J. Ashley, Phys. Rev. B 2, 397 (1970); T. M. Donovan, Ph.D. dissertation (Stanford Univ., Stanford, Calif., 1970) (Xerox University Microfilms, Ann Arbor, Mich., Order No. 71–12 887).
[Crossref]

Phys. Stat. Sol. B (1)

W. B. Fowler, Phys. Stat. Sol. B 52, 591 (1972).
[Crossref]

Z. Phys. (1)

H. Schröter, Z. Phys. 67, 24 (1931).
[Crossref]

Other (4)

The Stanford program for the Kramers–Kronig integral was written in Algol 60 by J. L. Shay, based on Ref. 4 and translated into fortran iv by D. H. Seib. For this work, it was modified to obtain the high-energy extrapolation that gives a least-squares-fit to experiment at low energies.

R. S. Bauer, Ph.D. dissertation (Stanford Univ., Stanford, Calif., 1970), pp. 39–43, 245–253, 273–277 (Xerox University Microfilms, Ann Arbor, Mich., Order No. 71–19646).

T. S. Moss, Optical Properties of Semiconductors (Butterworths, London, 1959), Ch. 2 and App. B.

J. J. White, Ph.D. dissertation (Univ. of North Carolina, Chapel Hill, N. C., 1965), pp. 12–22, 89–106 (Xerox University Microfilms, Ann Arbor, Mich., Order No. 65–14 402).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

The spectral distribution of the reflectance, R, and computed absorption coefficient, α, of AgCl at room temperature. The dashed and solid curves give the new results; the dots indicate the old computed value of α. The plus signs indicate the artifact removed from the original reflectance measurements.

Fig. 2
Fig. 2

The spectral distribution of (a) the computed index of refraction, n, and extinction coefficient, κ, and of (b) the computed complex dielectric constant, = 1 + i∊2, for AgCl at room temperature. The dashed and solid curves give the new results; the dots indicate the old results.

Tables (1)

Tables Icon

Table I Summary of optical constants of AgCl at room temperature at seven energies of interest. The numbers in parentheses indicate the photon energies at which structures occur.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

θ ( E 0 ) = 1 2 π 0 d ln R ( E ) d E ln | E + E 0 E - E 0 | d E .
θ ( E 0 ) = E 0 π 0 ln R ( E ) - ln R ( E 0 ) E 2 - E 0 2 d E .
R = R f ( E E f ) - A ,             E E f
Δ α Δ α f ( E E f ) 8.6 ,             E E f
Δ α f 1 30 Δ S ,