## Abstract

This paper corrects a definitional error in the previous paper on this topic and reports a considerably better dielectric material for this type of detector (i.e., *dln∊*/*dT* values as large as 30% K^{−1} in the range 0.3 to 10 K). Computed responsivity (times the square root of the detector area) based on this material varies from 6 × 10^{6} to 2 × 10^{4} V · W^{−1} · cm for reservoir temperatures between 0.3 and 10 K. The corresponding variation of the detectivity is from 2 × 10^{14} to 1 × 10^{11} cm · W^{−1} · Hz^{1/2}.

© 1974 Optical Society of America

Full Article |

PDF Article
### Equations (9)

Equations on this page are rendered with MathJax. Learn more.

(1)
$$\alpha =-d\hspace{0.17em}\text{ln}\u220a/dT+d\hspace{0.17em}\text{ln}\hspace{0.17em}\text{tan}\delta /dT$$
(2)
$$r\cong Ie\tau (d\hspace{0.17em}\text{ln}\u220a/dT)/\omega C\mathcal{C}{(1+{{\omega}_{c}}^{2}{\tau}^{2})}^{{\scriptstyle \frac{1}{2}}},$$
(3)
$${T}_{B}={T}_{0}(1+x),$$
(4)
$$r{A}^{{\scriptstyle \frac{1}{2}}}=e(d\hspace{0.17em}\text{ln}\u220a/dT)\times {[\tau x{T}_{0}/\omega C\hspace{0.17em}\text{tan}\delta {C}_{V}({T}_{B})\hspace{0.17em}(1-\alpha x{T}_{0})\hspace{0.17em}(1+{{\omega}_{c}}^{2}{\tau}^{2})d]}^{{\scriptstyle \frac{1}{2}}},$$
(5)
$$x*=[1\pm {(1-3\alpha {T}_{0})}^{{\scriptstyle \frac{1}{2}}}]/3\alpha {T}_{0},$$
(6)
$${C}_{V}(T)\cong 1.0\times {10}^{-6}T+3.0\times {10}^{-6}{T}^{3}(\text{J}\xb7{\text{cm}}^{-3}\xb7{\text{K}}^{-1}).$$
(7)
$$\begin{array}{c}C={C}_{0}[1+(d\hspace{0.17em}\text{ln}\u220a/dT)x],\\ \text{tan}\delta =\text{tan}{\delta}_{0}[1+(d\hspace{0.17em}\text{ln}\hspace{0.17em}\text{tan}\delta /dT)x],\end{array}$$
(8)
$${(\text{NEP})}^{2}/A=4kR{T}_{B}/A{r}^{2}+4k{{T}_{B}}^{2}\mathcal{G}/A+8e\sigma k{{T}_{B}}^{5},$$
(9)
$$D*={A}^{{\scriptstyle \frac{1}{2}}}/\text{NEP};$$