Abstract

We present absolute intensities for rotational Raman scattering (RRS) from N<sub>2</sub>,O<sub>2</sub>, and CO<sub>2</sub>, excited at 488.0 and 647.1 nm. The absolute scattering intensity for N<sub>2</sub> at 488.0 nm is characterized by its differential cross section for backscattering, summed over Stokes and anti-Stokes bands and over scattered-light polarizations, which we find to be 1.64×10<sup>-29</sup> cm<sup>2</sup>/sr ±8%. The ratio of the cross section for O<sup>2</sup> to that for N<sup>2</sup> at 488.0 nm is 2.61±5%, whereas the corresponding ratio for CO<sub>2</sub> to N<sub>2</sub> is 10.6±10%. Our values for RRS cross sections relative to the N<sub>2</sub> vibrational Raman cross section are in reasonable agreement with corresponding ratios reported recently by Fenner <i>et al</i>. On the other hand, our absolute cross sections are approximately twice as large as those obtained from the results of Fenner <i>et al.</i>, but agree closely with values calculated from recent measurements of the depolarization of Rayleigh scattering. Detailed observations of relative rotational-Raman-line intensities at temperatures of 22, 75, and 125 °C are consistent with theoretical predictions.

PDF Article

References

  • View by:
  • |
  • |

  1. J. Cooney, J. Appl. Meteorol. 9, 108 (1972).
  2. Jack A. Salzman, William J. Masica, and Thom A. Coney, Determination of Gas Temperatures fromt Laser-Raman Scattering, NASA Report No. TN D-6336 (National Technical Information Service, Springfield, Va., 1971); Jack A. Salzman and Thom A. Coney, Remote Measurement of Atmospheric Temperatures by Raman Lidar, NASA Report No. TMX-68250 (National Technical Information Service, Springfield, Va., 1973).
  3. R. S. Hickman and L. H. Liang, Rev. Sci. Instrum. 43, 796 (1972).
  4. R. L. Rowell, G. M. Aval, and J. J. Barrett, J. Chem. Phys. 54, 1960 (1971).
  5. N. J. Bridge and A. D. Buckingham, Proc. R. Soc. A 295, 334 (1966).
  6. W. R. Fenner, H. A. Hyatt, J. M. Kellam, and S. P. S. Porto, J. Opt. Soc. Am. 63, 73 (1973).
  7. Alfons Weber, in The Raman Effect, Vol. 2: Applications, edited by Anthony Anderson (Dekker, New York, 1973), Ch. 9.
  8. Gerhard Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules (Van Nostrand, Princeton, N. J., 1950).
  9. The O2 RRS spectrum departs slightly from that of an SLM because the ground electronic state is a spin triplet. In consequence, each RRS line is split into a triplet, having relatively weak satellite components separated by a few cm-1, from the central component. The satellite intensities decrease rapidly as the rotational quantum number increases. RRS cross sections reported in this work correspond to the sum of the three lines in each triplet. For a high-resolution spectrum of O2 RRS and its analysis, see for example, Daryl L. Renschler, James L. Hunt, T. K. McCubbin, Jr., and S. R. Polo, J. Mol. Spectrosc. 31, 173 (1969).
  10. The ground vibrational state of CO2 corresponds to an SLM, whereas the first vibrational excited state (containing about 7% of the molecules at standard temperature) is not linear, leading to characteristically different RRS. An analysis of the resulting RRS spectrum [J. J. Barrett and A. Weber, J. Opt. Soc. Am. 60, 70 (1970)] shows that the contribution from the excited state is small near standard temperature.
  11. C. M. Penney, J. Opt. Soc. Am. 59, 34 (1969).
  12. G. Placzek, in Handbuch der Radiologie, Vol. 6, edited by G. Marx (Akademische Verlagsgesellschaft, Leipzig, 1934), Part 2, p. 205. English translation by A. Werbin, U.C.R.L. Translation No. 526(L), Lawrence Radiation Laboratory (1959).
  13. C. M. Penney, L. M. Goldman, and M. Lapp, Nat. Phys. Sci. 235, 110 (1972).
  14. R. Stair, W. E. Schneider, and J. K. Jackson, Appl. Opt. 2, 1151 (1963).
  15. W. F. Murphy, W. Holzer, and H. J. Bernstein, Appl. Spectrosc. 23, 211 (1969).
  16. D. G. Fouche and R. K. Chang, Appl. Phys. Lett. 20, 256 (1972).

Aval, G. M.

R. L. Rowell, G. M. Aval, and J. J. Barrett, J. Chem. Phys. 54, 1960 (1971).

Barrett, J. J.

R. L. Rowell, G. M. Aval, and J. J. Barrett, J. Chem. Phys. 54, 1960 (1971).

Bernstein, H. J.

W. F. Murphy, W. Holzer, and H. J. Bernstein, Appl. Spectrosc. 23, 211 (1969).

Bridge, N. J.

N. J. Bridge and A. D. Buckingham, Proc. R. Soc. A 295, 334 (1966).

Buckingham, A. D.

N. J. Bridge and A. D. Buckingham, Proc. R. Soc. A 295, 334 (1966).

Chang, R. K.

D. G. Fouche and R. K. Chang, Appl. Phys. Lett. 20, 256 (1972).

Coney, Thom A.

Jack A. Salzman, William J. Masica, and Thom A. Coney, Determination of Gas Temperatures fromt Laser-Raman Scattering, NASA Report No. TN D-6336 (National Technical Information Service, Springfield, Va., 1971); Jack A. Salzman and Thom A. Coney, Remote Measurement of Atmospheric Temperatures by Raman Lidar, NASA Report No. TMX-68250 (National Technical Information Service, Springfield, Va., 1973).

Cooney, J.

J. Cooney, J. Appl. Meteorol. 9, 108 (1972).

Fenner, W. R.

W. R. Fenner, H. A. Hyatt, J. M. Kellam, and S. P. S. Porto, J. Opt. Soc. Am. 63, 73 (1973).

Fouche, D. G.

D. G. Fouche and R. K. Chang, Appl. Phys. Lett. 20, 256 (1972).

Goldman, L. M.

C. M. Penney, L. M. Goldman, and M. Lapp, Nat. Phys. Sci. 235, 110 (1972).

Herzberg, Gerhard

Gerhard Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules (Van Nostrand, Princeton, N. J., 1950).

Hickman, R. S.

R. S. Hickman and L. H. Liang, Rev. Sci. Instrum. 43, 796 (1972).

Holzer, W.

W. F. Murphy, W. Holzer, and H. J. Bernstein, Appl. Spectrosc. 23, 211 (1969).

Hunt, James L.

The O2 RRS spectrum departs slightly from that of an SLM because the ground electronic state is a spin triplet. In consequence, each RRS line is split into a triplet, having relatively weak satellite components separated by a few cm-1, from the central component. The satellite intensities decrease rapidly as the rotational quantum number increases. RRS cross sections reported in this work correspond to the sum of the three lines in each triplet. For a high-resolution spectrum of O2 RRS and its analysis, see for example, Daryl L. Renschler, James L. Hunt, T. K. McCubbin, Jr., and S. R. Polo, J. Mol. Spectrosc. 31, 173 (1969).

Hyatt, H. A.

W. R. Fenner, H. A. Hyatt, J. M. Kellam, and S. P. S. Porto, J. Opt. Soc. Am. 63, 73 (1973).

Jackson, J. K.

R. Stair, W. E. Schneider, and J. K. Jackson, Appl. Opt. 2, 1151 (1963).

Kellam, J. M.

W. R. Fenner, H. A. Hyatt, J. M. Kellam, and S. P. S. Porto, J. Opt. Soc. Am. 63, 73 (1973).

Lapp, M.

C. M. Penney, L. M. Goldman, and M. Lapp, Nat. Phys. Sci. 235, 110 (1972).

Liang, L. H.

R. S. Hickman and L. H. Liang, Rev. Sci. Instrum. 43, 796 (1972).

Masica, William J.

Jack A. Salzman, William J. Masica, and Thom A. Coney, Determination of Gas Temperatures fromt Laser-Raman Scattering, NASA Report No. TN D-6336 (National Technical Information Service, Springfield, Va., 1971); Jack A. Salzman and Thom A. Coney, Remote Measurement of Atmospheric Temperatures by Raman Lidar, NASA Report No. TMX-68250 (National Technical Information Service, Springfield, Va., 1973).

McCubbin, Jr., T. K.

The O2 RRS spectrum departs slightly from that of an SLM because the ground electronic state is a spin triplet. In consequence, each RRS line is split into a triplet, having relatively weak satellite components separated by a few cm-1, from the central component. The satellite intensities decrease rapidly as the rotational quantum number increases. RRS cross sections reported in this work correspond to the sum of the three lines in each triplet. For a high-resolution spectrum of O2 RRS and its analysis, see for example, Daryl L. Renschler, James L. Hunt, T. K. McCubbin, Jr., and S. R. Polo, J. Mol. Spectrosc. 31, 173 (1969).

Murphy, W. F.

W. F. Murphy, W. Holzer, and H. J. Bernstein, Appl. Spectrosc. 23, 211 (1969).

Penney, C. M.

C. M. Penney, J. Opt. Soc. Am. 59, 34 (1969).

C. M. Penney, L. M. Goldman, and M. Lapp, Nat. Phys. Sci. 235, 110 (1972).

Placzek, G.

G. Placzek, in Handbuch der Radiologie, Vol. 6, edited by G. Marx (Akademische Verlagsgesellschaft, Leipzig, 1934), Part 2, p. 205. English translation by A. Werbin, U.C.R.L. Translation No. 526(L), Lawrence Radiation Laboratory (1959).

Polo, S. R.

The O2 RRS spectrum departs slightly from that of an SLM because the ground electronic state is a spin triplet. In consequence, each RRS line is split into a triplet, having relatively weak satellite components separated by a few cm-1, from the central component. The satellite intensities decrease rapidly as the rotational quantum number increases. RRS cross sections reported in this work correspond to the sum of the three lines in each triplet. For a high-resolution spectrum of O2 RRS and its analysis, see for example, Daryl L. Renschler, James L. Hunt, T. K. McCubbin, Jr., and S. R. Polo, J. Mol. Spectrosc. 31, 173 (1969).

Porto, S. P. S.

W. R. Fenner, H. A. Hyatt, J. M. Kellam, and S. P. S. Porto, J. Opt. Soc. Am. 63, 73 (1973).

Renschler, Daryl L.

The O2 RRS spectrum departs slightly from that of an SLM because the ground electronic state is a spin triplet. In consequence, each RRS line is split into a triplet, having relatively weak satellite components separated by a few cm-1, from the central component. The satellite intensities decrease rapidly as the rotational quantum number increases. RRS cross sections reported in this work correspond to the sum of the three lines in each triplet. For a high-resolution spectrum of O2 RRS and its analysis, see for example, Daryl L. Renschler, James L. Hunt, T. K. McCubbin, Jr., and S. R. Polo, J. Mol. Spectrosc. 31, 173 (1969).

Rowell, R. L.

R. L. Rowell, G. M. Aval, and J. J. Barrett, J. Chem. Phys. 54, 1960 (1971).

Salzman, Jack A.

Jack A. Salzman, William J. Masica, and Thom A. Coney, Determination of Gas Temperatures fromt Laser-Raman Scattering, NASA Report No. TN D-6336 (National Technical Information Service, Springfield, Va., 1971); Jack A. Salzman and Thom A. Coney, Remote Measurement of Atmospheric Temperatures by Raman Lidar, NASA Report No. TMX-68250 (National Technical Information Service, Springfield, Va., 1973).

Schneider, W. E.

R. Stair, W. E. Schneider, and J. K. Jackson, Appl. Opt. 2, 1151 (1963).

Stair, R.

R. Stair, W. E. Schneider, and J. K. Jackson, Appl. Opt. 2, 1151 (1963).

Weber, Alfons

Alfons Weber, in The Raman Effect, Vol. 2: Applications, edited by Anthony Anderson (Dekker, New York, 1973), Ch. 9.

Other (16)

J. Cooney, J. Appl. Meteorol. 9, 108 (1972).

Jack A. Salzman, William J. Masica, and Thom A. Coney, Determination of Gas Temperatures fromt Laser-Raman Scattering, NASA Report No. TN D-6336 (National Technical Information Service, Springfield, Va., 1971); Jack A. Salzman and Thom A. Coney, Remote Measurement of Atmospheric Temperatures by Raman Lidar, NASA Report No. TMX-68250 (National Technical Information Service, Springfield, Va., 1973).

R. S. Hickman and L. H. Liang, Rev. Sci. Instrum. 43, 796 (1972).

R. L. Rowell, G. M. Aval, and J. J. Barrett, J. Chem. Phys. 54, 1960 (1971).

N. J. Bridge and A. D. Buckingham, Proc. R. Soc. A 295, 334 (1966).

W. R. Fenner, H. A. Hyatt, J. M. Kellam, and S. P. S. Porto, J. Opt. Soc. Am. 63, 73 (1973).

Alfons Weber, in The Raman Effect, Vol. 2: Applications, edited by Anthony Anderson (Dekker, New York, 1973), Ch. 9.

Gerhard Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules (Van Nostrand, Princeton, N. J., 1950).

The O2 RRS spectrum departs slightly from that of an SLM because the ground electronic state is a spin triplet. In consequence, each RRS line is split into a triplet, having relatively weak satellite components separated by a few cm-1, from the central component. The satellite intensities decrease rapidly as the rotational quantum number increases. RRS cross sections reported in this work correspond to the sum of the three lines in each triplet. For a high-resolution spectrum of O2 RRS and its analysis, see for example, Daryl L. Renschler, James L. Hunt, T. K. McCubbin, Jr., and S. R. Polo, J. Mol. Spectrosc. 31, 173 (1969).

The ground vibrational state of CO2 corresponds to an SLM, whereas the first vibrational excited state (containing about 7% of the molecules at standard temperature) is not linear, leading to characteristically different RRS. An analysis of the resulting RRS spectrum [J. J. Barrett and A. Weber, J. Opt. Soc. Am. 60, 70 (1970)] shows that the contribution from the excited state is small near standard temperature.

C. M. Penney, J. Opt. Soc. Am. 59, 34 (1969).

G. Placzek, in Handbuch der Radiologie, Vol. 6, edited by G. Marx (Akademische Verlagsgesellschaft, Leipzig, 1934), Part 2, p. 205. English translation by A. Werbin, U.C.R.L. Translation No. 526(L), Lawrence Radiation Laboratory (1959).

C. M. Penney, L. M. Goldman, and M. Lapp, Nat. Phys. Sci. 235, 110 (1972).

R. Stair, W. E. Schneider, and J. K. Jackson, Appl. Opt. 2, 1151 (1963).

W. F. Murphy, W. Holzer, and H. J. Bernstein, Appl. Spectrosc. 23, 211 (1969).

D. G. Fouche and R. K. Chang, Appl. Phys. Lett. 20, 256 (1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.