Abstract

The 630-nm loss band recently identified in unclad fibers made from low-OH-content vitreous silica is shown to be introduced in the fiber-drawing process. The band has an absorptive component as well as resonance fluorescence whose peak intensity amounts to about 16% of the total losses. A red fluorescence was observed when the same fibers were illuminated with the 325-nm line of a HeCd laser. The loss band could be eliminated by annealing for 3 h at 700 °C. Spontaneous annealing at room temperature was also observed in some cases. It is proposed that the 630-nm band is associated with drawing-induced defects of the silica network.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Kaiser, A. R. Tynes, A. D. Pearson, W. G. French, A. H. Cherin, R. E. Jaeger, and H. W. Astle, J. Opt. Soc. Am. 63, 1141 (1973).
    [CrossRef]
  2. P. Kaiser and H. W. Astle, J. Opt. Soc. Am. 64, 469 (1974)
    [CrossRef]
  3. P. Kaiser, Appl. Phys. Lett. 23, 45 (1973).
    [CrossRef]
  4. Amersil Catalog No. EM 9227.
  5. G. Hetherington and K. H. Jack, Phys. Chem. Glass. 3, 129 (1962).
  6. Modern Aspects of the Vitreous State, edited by J. D. Mackenzie (Butterworths, Washington, 1962), p. 195.
  7. A. D. Pearson and W. G. French, Bell Lab. Rec. 50, 103 (1972).
  8. E. Lell, N. J. Kreidl, and J. R. Hensler, in Progress in Ceramic Science, Volume 4, edited by J. E. Burke (Pergamon, New York, 1966).
  9. D. A. Pinnow and T. C. Rich (private communication).
  10. D. B. Keck and A. R. Tynes, Appl. Opt. 11, 1502 (1972).
    [CrossRef] [PubMed]
  11. A. R. Tynes (private communication).
  12. A. R. Tynes, A. D. Pearson, and D. L. Bisbee, J. Opt. Soc. Am. 61, 143 (1971).
    [CrossRef]
  13. J. Stone, Appl. Opt. 12, 1824 (1973).
    [CrossRef] [PubMed]
  14. P. Kaiser, E. A. J. Marcatili, and S. E. Miller, Bell. Syst. Tech. J. 52, 265 (1973).
    [CrossRef]
  15. C. A. Burrus, E. L. Chinnock, D. Gloge, W. S. Holden, T. Li, R. D. Standley, and D. B. Keck, Proc. IEEE 61, 1498 (1973).
    [CrossRef]
  16. W. T. Silfvast (private communication).
  17. W. H. Otto, J. Am. Ceram. Soc. 44, 68 (1961).
    [CrossRef]
  18. O. L. Anderson, J. Appl. Phys. 29, 9 (1958).
    [CrossRef]
  19. Kapany, Fiber Optics (Academic, New York, 1967).
  20. P. W. Levy, J. Phys. Chem. Solids 13, 287 (1960).
    [CrossRef]
  21. R. H. Stolen, J. T. Kraus, and C. R. Kurkjian, Disc. Faraday Soc. 50, 103 (1970).
    [CrossRef]
  22. J. S. Stroud, J. W. H. Schreurs, and R. F. TuckerSeventh International Congress on Glass, New York (Gordon and Breach, New York, 1965).
  23. C. M. Nelson and J. H. Crawford, J. Phys. Chem. Solids 13, 296 (1960).
    [CrossRef]
  24. M. Levy and J. H. O. Varley, Proc. Phys. Soc. Lond. 68, 223 (1955).
    [CrossRef]
  25. E. W. J. Mitchell and E. G. S. Paige, Phil. Mag. 1, 1085 (1956).
    [CrossRef]
  26. D. S. Billington and J. H. Crawford, Radiation Damage in Solids (Princeton U. P., Princeton, 1961), p. 224.
  27. T. Bell, G. Hetherington, and K. H. Jack, Phys. Chem. Glass. 3, 141 (1962).
  28. G. Hetherington and K. H. Jack, Phys. Chem. Glass. 5, 147 (1964).
  29. G. S. Monk, Nucleonics 10, 52 (1952).
  30. J. S. Stroud, J. Chem. Phys. 37, 836 (1962).
    [CrossRef]
  31. R. A. Weeks and E. Lell, J. Appl. Phys. 35, 1932 (1964).
    [CrossRef]
  32. G. Hetherington, K. H. Jack, and P. C. Kennedy, Phys. Chem. Glass. 5, 130 (1964).
  33. G. Hetherington (private communication).

1974 (1)

1973 (5)

P. Kaiser, A. R. Tynes, A. D. Pearson, W. G. French, A. H. Cherin, R. E. Jaeger, and H. W. Astle, J. Opt. Soc. Am. 63, 1141 (1973).
[CrossRef]

J. Stone, Appl. Opt. 12, 1824 (1973).
[CrossRef] [PubMed]

P. Kaiser, E. A. J. Marcatili, and S. E. Miller, Bell. Syst. Tech. J. 52, 265 (1973).
[CrossRef]

C. A. Burrus, E. L. Chinnock, D. Gloge, W. S. Holden, T. Li, R. D. Standley, and D. B. Keck, Proc. IEEE 61, 1498 (1973).
[CrossRef]

P. Kaiser, Appl. Phys. Lett. 23, 45 (1973).
[CrossRef]

1972 (2)

A. D. Pearson and W. G. French, Bell Lab. Rec. 50, 103 (1972).

D. B. Keck and A. R. Tynes, Appl. Opt. 11, 1502 (1972).
[CrossRef] [PubMed]

1971 (1)

1970 (1)

R. H. Stolen, J. T. Kraus, and C. R. Kurkjian, Disc. Faraday Soc. 50, 103 (1970).
[CrossRef]

1964 (3)

R. A. Weeks and E. Lell, J. Appl. Phys. 35, 1932 (1964).
[CrossRef]

G. Hetherington, K. H. Jack, and P. C. Kennedy, Phys. Chem. Glass. 5, 130 (1964).

G. Hetherington and K. H. Jack, Phys. Chem. Glass. 5, 147 (1964).

1962 (3)

T. Bell, G. Hetherington, and K. H. Jack, Phys. Chem. Glass. 3, 141 (1962).

J. S. Stroud, J. Chem. Phys. 37, 836 (1962).
[CrossRef]

G. Hetherington and K. H. Jack, Phys. Chem. Glass. 3, 129 (1962).

1961 (1)

W. H. Otto, J. Am. Ceram. Soc. 44, 68 (1961).
[CrossRef]

1960 (2)

C. M. Nelson and J. H. Crawford, J. Phys. Chem. Solids 13, 296 (1960).
[CrossRef]

P. W. Levy, J. Phys. Chem. Solids 13, 287 (1960).
[CrossRef]

1958 (1)

O. L. Anderson, J. Appl. Phys. 29, 9 (1958).
[CrossRef]

1956 (1)

E. W. J. Mitchell and E. G. S. Paige, Phil. Mag. 1, 1085 (1956).
[CrossRef]

1955 (1)

M. Levy and J. H. O. Varley, Proc. Phys. Soc. Lond. 68, 223 (1955).
[CrossRef]

1952 (1)

G. S. Monk, Nucleonics 10, 52 (1952).

Anderson, O. L.

O. L. Anderson, J. Appl. Phys. 29, 9 (1958).
[CrossRef]

Astle, H. W.

Bell, T.

T. Bell, G. Hetherington, and K. H. Jack, Phys. Chem. Glass. 3, 141 (1962).

Billington, D. S.

D. S. Billington and J. H. Crawford, Radiation Damage in Solids (Princeton U. P., Princeton, 1961), p. 224.

Bisbee, D. L.

Burrus, C. A.

C. A. Burrus, E. L. Chinnock, D. Gloge, W. S. Holden, T. Li, R. D. Standley, and D. B. Keck, Proc. IEEE 61, 1498 (1973).
[CrossRef]

Cherin, A. H.

Chinnock, E. L.

C. A. Burrus, E. L. Chinnock, D. Gloge, W. S. Holden, T. Li, R. D. Standley, and D. B. Keck, Proc. IEEE 61, 1498 (1973).
[CrossRef]

Crawford, J. H.

C. M. Nelson and J. H. Crawford, J. Phys. Chem. Solids 13, 296 (1960).
[CrossRef]

D. S. Billington and J. H. Crawford, Radiation Damage in Solids (Princeton U. P., Princeton, 1961), p. 224.

French, W. G.

Gloge, D.

C. A. Burrus, E. L. Chinnock, D. Gloge, W. S. Holden, T. Li, R. D. Standley, and D. B. Keck, Proc. IEEE 61, 1498 (1973).
[CrossRef]

Hensler, J. R.

E. Lell, N. J. Kreidl, and J. R. Hensler, in Progress in Ceramic Science, Volume 4, edited by J. E. Burke (Pergamon, New York, 1966).

Hetherington, G.

G. Hetherington and K. H. Jack, Phys. Chem. Glass. 5, 147 (1964).

G. Hetherington, K. H. Jack, and P. C. Kennedy, Phys. Chem. Glass. 5, 130 (1964).

G. Hetherington and K. H. Jack, Phys. Chem. Glass. 3, 129 (1962).

T. Bell, G. Hetherington, and K. H. Jack, Phys. Chem. Glass. 3, 141 (1962).

G. Hetherington (private communication).

Holden, W. S.

C. A. Burrus, E. L. Chinnock, D. Gloge, W. S. Holden, T. Li, R. D. Standley, and D. B. Keck, Proc. IEEE 61, 1498 (1973).
[CrossRef]

Jack, K. H.

G. Hetherington, K. H. Jack, and P. C. Kennedy, Phys. Chem. Glass. 5, 130 (1964).

G. Hetherington and K. H. Jack, Phys. Chem. Glass. 5, 147 (1964).

T. Bell, G. Hetherington, and K. H. Jack, Phys. Chem. Glass. 3, 141 (1962).

G. Hetherington and K. H. Jack, Phys. Chem. Glass. 3, 129 (1962).

Jaeger, R. E.

Kaiser, P.

Kapany,

Kapany, Fiber Optics (Academic, New York, 1967).

Keck, D. B.

C. A. Burrus, E. L. Chinnock, D. Gloge, W. S. Holden, T. Li, R. D. Standley, and D. B. Keck, Proc. IEEE 61, 1498 (1973).
[CrossRef]

D. B. Keck and A. R. Tynes, Appl. Opt. 11, 1502 (1972).
[CrossRef] [PubMed]

Kennedy, P. C.

G. Hetherington, K. H. Jack, and P. C. Kennedy, Phys. Chem. Glass. 5, 130 (1964).

Kraus, J. T.

R. H. Stolen, J. T. Kraus, and C. R. Kurkjian, Disc. Faraday Soc. 50, 103 (1970).
[CrossRef]

Kreidl, N. J.

E. Lell, N. J. Kreidl, and J. R. Hensler, in Progress in Ceramic Science, Volume 4, edited by J. E. Burke (Pergamon, New York, 1966).

Kurkjian, C. R.

R. H. Stolen, J. T. Kraus, and C. R. Kurkjian, Disc. Faraday Soc. 50, 103 (1970).
[CrossRef]

Lell, E.

R. A. Weeks and E. Lell, J. Appl. Phys. 35, 1932 (1964).
[CrossRef]

E. Lell, N. J. Kreidl, and J. R. Hensler, in Progress in Ceramic Science, Volume 4, edited by J. E. Burke (Pergamon, New York, 1966).

Levy, M.

M. Levy and J. H. O. Varley, Proc. Phys. Soc. Lond. 68, 223 (1955).
[CrossRef]

Levy, P. W.

P. W. Levy, J. Phys. Chem. Solids 13, 287 (1960).
[CrossRef]

Li, T.

C. A. Burrus, E. L. Chinnock, D. Gloge, W. S. Holden, T. Li, R. D. Standley, and D. B. Keck, Proc. IEEE 61, 1498 (1973).
[CrossRef]

Marcatili, E. A. J.

P. Kaiser, E. A. J. Marcatili, and S. E. Miller, Bell. Syst. Tech. J. 52, 265 (1973).
[CrossRef]

Miller, S. E.

P. Kaiser, E. A. J. Marcatili, and S. E. Miller, Bell. Syst. Tech. J. 52, 265 (1973).
[CrossRef]

Mitchell, E. W. J.

E. W. J. Mitchell and E. G. S. Paige, Phil. Mag. 1, 1085 (1956).
[CrossRef]

Monk, G. S.

G. S. Monk, Nucleonics 10, 52 (1952).

Nelson, C. M.

C. M. Nelson and J. H. Crawford, J. Phys. Chem. Solids 13, 296 (1960).
[CrossRef]

Otto, W. H.

W. H. Otto, J. Am. Ceram. Soc. 44, 68 (1961).
[CrossRef]

Paige, E. G. S.

E. W. J. Mitchell and E. G. S. Paige, Phil. Mag. 1, 1085 (1956).
[CrossRef]

Pearson, A. D.

Pinnow, D. A.

D. A. Pinnow and T. C. Rich (private communication).

Rich, T. C.

D. A. Pinnow and T. C. Rich (private communication).

Schreurs, J. W. H.

J. S. Stroud, J. W. H. Schreurs, and R. F. TuckerSeventh International Congress on Glass, New York (Gordon and Breach, New York, 1965).

Silfvast, W. T.

W. T. Silfvast (private communication).

Standley, R. D.

C. A. Burrus, E. L. Chinnock, D. Gloge, W. S. Holden, T. Li, R. D. Standley, and D. B. Keck, Proc. IEEE 61, 1498 (1973).
[CrossRef]

Stolen, R. H.

R. H. Stolen, J. T. Kraus, and C. R. Kurkjian, Disc. Faraday Soc. 50, 103 (1970).
[CrossRef]

Stone, J.

Stroud, J. S.

J. S. Stroud, J. Chem. Phys. 37, 836 (1962).
[CrossRef]

J. S. Stroud, J. W. H. Schreurs, and R. F. TuckerSeventh International Congress on Glass, New York (Gordon and Breach, New York, 1965).

Tucker, R. F.

J. S. Stroud, J. W. H. Schreurs, and R. F. TuckerSeventh International Congress on Glass, New York (Gordon and Breach, New York, 1965).

Tynes, A. R.

Varley, J. H. O.

M. Levy and J. H. O. Varley, Proc. Phys. Soc. Lond. 68, 223 (1955).
[CrossRef]

Weeks, R. A.

R. A. Weeks and E. Lell, J. Appl. Phys. 35, 1932 (1964).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

P. Kaiser, Appl. Phys. Lett. 23, 45 (1973).
[CrossRef]

Bell Lab. Rec. (1)

A. D. Pearson and W. G. French, Bell Lab. Rec. 50, 103 (1972).

Bell. Syst. Tech. J. (1)

P. Kaiser, E. A. J. Marcatili, and S. E. Miller, Bell. Syst. Tech. J. 52, 265 (1973).
[CrossRef]

Disc. Faraday Soc. (1)

R. H. Stolen, J. T. Kraus, and C. R. Kurkjian, Disc. Faraday Soc. 50, 103 (1970).
[CrossRef]

J. Am. Ceram. Soc. (1)

W. H. Otto, J. Am. Ceram. Soc. 44, 68 (1961).
[CrossRef]

J. Appl. Phys. (2)

O. L. Anderson, J. Appl. Phys. 29, 9 (1958).
[CrossRef]

R. A. Weeks and E. Lell, J. Appl. Phys. 35, 1932 (1964).
[CrossRef]

J. Chem. Phys. (1)

J. S. Stroud, J. Chem. Phys. 37, 836 (1962).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Phys. Chem. Solids (2)

P. W. Levy, J. Phys. Chem. Solids 13, 287 (1960).
[CrossRef]

C. M. Nelson and J. H. Crawford, J. Phys. Chem. Solids 13, 296 (1960).
[CrossRef]

Nucleonics (1)

G. S. Monk, Nucleonics 10, 52 (1952).

Phil. Mag. (1)

E. W. J. Mitchell and E. G. S. Paige, Phil. Mag. 1, 1085 (1956).
[CrossRef]

Phys. Chem. Glass. (4)

T. Bell, G. Hetherington, and K. H. Jack, Phys. Chem. Glass. 3, 141 (1962).

G. Hetherington and K. H. Jack, Phys. Chem. Glass. 5, 147 (1964).

G. Hetherington, K. H. Jack, and P. C. Kennedy, Phys. Chem. Glass. 5, 130 (1964).

G. Hetherington and K. H. Jack, Phys. Chem. Glass. 3, 129 (1962).

Proc. IEEE (1)

C. A. Burrus, E. L. Chinnock, D. Gloge, W. S. Holden, T. Li, R. D. Standley, and D. B. Keck, Proc. IEEE 61, 1498 (1973).
[CrossRef]

Proc. Phys. Soc. Lond. (1)

M. Levy and J. H. O. Varley, Proc. Phys. Soc. Lond. 68, 223 (1955).
[CrossRef]

Other (10)

J. S. Stroud, J. W. H. Schreurs, and R. F. TuckerSeventh International Congress on Glass, New York (Gordon and Breach, New York, 1965).

W. T. Silfvast (private communication).

Kapany, Fiber Optics (Academic, New York, 1967).

G. Hetherington (private communication).

D. S. Billington and J. H. Crawford, Radiation Damage in Solids (Princeton U. P., Princeton, 1961), p. 224.

Modern Aspects of the Vitreous State, edited by J. D. Mackenzie (Butterworths, Washington, 1962), p. 195.

Amersil Catalog No. EM 9227.

E. Lell, N. J. Kreidl, and J. R. Hensler, in Progress in Ceramic Science, Volume 4, edited by J. E. Burke (Pergamon, New York, 1966).

D. A. Pinnow and T. C. Rich (private communication).

A. R. Tynes (private communication).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Spectral total losses of two Spectrosil WF unclad fibers, (a) 24.6 m, (b) 32 m, and (c) approximate scattering losses of an unclad Spectrosil WF fiber.

Fig. 2
Fig. 2

Spectral (a) total and (b) approximate scattering losses of an unclad Suprasil W1 fiber.

Fig. 3
Fig. 3

Spectral (a) total and (b) approximate scattering losses of an unclad Corning 7943 fiber.

Fig. 4
Fig. 4

Spectral (a) total, (b) approximate absorption, (c) approximate average scattering, and (d) approximate minimum scattering losses of an unclad Infrasil fiber.

Fig. 5
Fig. 5

Approximate spectral scattering losses of a (a) 7-mm-diam Infrasil stock rod, (b) 1-mm-diam Suprasil WI stock rod, (c) annealed Spectrosil WF unclad fiber, and (d) 7-mm-diam Suprasil W1 stock rod.

Fig. 6
Fig. 6

Spectral scattering losses of a Suprasil W1 (a) 7-mm-diam stock rod, (b) heated 7-mm-diam stock rod, (c) 1.5-mm-diam unclad fiber, and (d) 0.25-mm unclad fiber.

Fig. 7
Fig. 7

Spectral losses of Spectrosil WF unclad fibers annealed for 3 h in air atmosphere. Annealing temperature in degrees centigrade.

Fig. 8
Fig. 8

Annealing of Spectrosil WF unclad fibers as function of temperature (3 h, with gradual cooling). (a) 0.630-μm band, (b) 0.945-μm band.

Fig. 9
Fig. 9

Spectral losses of a single-material fiber with Suprasil W1 core, measured (a) shortly after fabrication and (b) after four weeks.

Fig. 10
Fig. 10

Spectral transmission losses of unclad Suprasil 2 fibers drawn from a (a) 7-mm-diam stock rod and (b) 2-mm-diam stock rod.

Fig. 11
Fig. 11

Spectral losses of a single-material fiber with Suprasil 2 core, measured (a) immediately after fabrication and (b) after four weeks.

Fig. 12
Fig. 12

Spectral total losses of a low-loss multimode fiber (Corning CGW-Bell-10) as measured (a) in our laboratory, (b) by Corning Glass Works, and (c) spectral scattering losses.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SiCl 4 + O 2 SiO 2 + 2 Cl 2 .