Abstract

Spectral losses in unclad optical fibers have been measured in the region between 0.5 and 1.12 μm with the filtered light of a xenon-arc lamp. Total losses were obtained nondestructively by measuring the light refracted from the fiber when it was immersed in a higher-index liquid. The radial irradiance distribution of the refracted light was used as a measure of the mode spectrum. Because scattering losses could be shown to approach the Rayleigh-scattering limit, and total losses were between 6 and 8 dB/km, i.e., 75 to 84% per kilometer, for some of the highest-purity synthetic vitreous silicas, we tentatively conclude that the spectral losses of unclad fibers represent a good approximation to the spectral losses of the bulk material.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. B. Keck, P. C. Schultz, and F. Zimar, Appl. Phys. Lett. 21, 215 (1972); See also: Corning Glass Works, Press Information, 14August1972.
    [Crossref]
  2. P. J. R. Laybourn, W. A. Gambling, and D. T. Jones, Opto-Electron. 3, 137 (1971).
    [Crossref]
  3. M. W. Jones and K. C. Kao, J. Phys. E 2, 331 (1969).
    [Crossref]
  4. T. C. Rich and D. A. Pinnow, Appl. Phys. Lett. 20, 264 (1972).
    [Crossref]
  5. Amersil, Inc., Catalog No. EM 9227-1, SP-SM-12-71.
  6. P. Kaiser, A. R. Tynes, H. W. Astle, A. D. Pearson, W. G. French, R. E. Jaeger, and A. H. Cherin, J. Opt. Soc. Am. 63, 1141 (1973).
    [Crossref]
  7. S. E. Miller and E. A. J. Marcatili (Bell Laboratories, Holmdel, N. J.), private communication.
  8. E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).
    [Crossref]
  9. D. Gloge, Appl. Opt. 10, 2252 (1971).
    [Crossref] [PubMed]
  10. Supplied by Infrared Industries, Waltham, Mass.
  11. A. R. Tynes, Appl. Opt. 9, 2706 (1970).
    [Crossref] [PubMed]

1973 (1)

1972 (2)

D. B. Keck, P. C. Schultz, and F. Zimar, Appl. Phys. Lett. 21, 215 (1972); See also: Corning Glass Works, Press Information, 14August1972.
[Crossref]

T. C. Rich and D. A. Pinnow, Appl. Phys. Lett. 20, 264 (1972).
[Crossref]

1971 (2)

D. Gloge, Appl. Opt. 10, 2252 (1971).
[Crossref] [PubMed]

P. J. R. Laybourn, W. A. Gambling, and D. T. Jones, Opto-Electron. 3, 137 (1971).
[Crossref]

1970 (1)

1969 (1)

M. W. Jones and K. C. Kao, J. Phys. E 2, 331 (1969).
[Crossref]

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).
[Crossref]

Astle, H. W.

Cherin, A. H.

French, W. G.

Gambling, W. A.

P. J. R. Laybourn, W. A. Gambling, and D. T. Jones, Opto-Electron. 3, 137 (1971).
[Crossref]

Gloge, D.

Jaeger, R. E.

Jones, D. T.

P. J. R. Laybourn, W. A. Gambling, and D. T. Jones, Opto-Electron. 3, 137 (1971).
[Crossref]

Jones, M. W.

M. W. Jones and K. C. Kao, J. Phys. E 2, 331 (1969).
[Crossref]

Kaiser, P.

Kao, K. C.

M. W. Jones and K. C. Kao, J. Phys. E 2, 331 (1969).
[Crossref]

Keck, D. B.

D. B. Keck, P. C. Schultz, and F. Zimar, Appl. Phys. Lett. 21, 215 (1972); See also: Corning Glass Works, Press Information, 14August1972.
[Crossref]

Laybourn, P. J. R.

P. J. R. Laybourn, W. A. Gambling, and D. T. Jones, Opto-Electron. 3, 137 (1971).
[Crossref]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).
[Crossref]

S. E. Miller and E. A. J. Marcatili (Bell Laboratories, Holmdel, N. J.), private communication.

Miller, S. E.

S. E. Miller and E. A. J. Marcatili (Bell Laboratories, Holmdel, N. J.), private communication.

Pearson, A. D.

Pinnow, D. A.

T. C. Rich and D. A. Pinnow, Appl. Phys. Lett. 20, 264 (1972).
[Crossref]

Rich, T. C.

T. C. Rich and D. A. Pinnow, Appl. Phys. Lett. 20, 264 (1972).
[Crossref]

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).
[Crossref]

Schultz, P. C.

D. B. Keck, P. C. Schultz, and F. Zimar, Appl. Phys. Lett. 21, 215 (1972); See also: Corning Glass Works, Press Information, 14August1972.
[Crossref]

Tynes, A. R.

Zimar, F.

D. B. Keck, P. C. Schultz, and F. Zimar, Appl. Phys. Lett. 21, 215 (1972); See also: Corning Glass Works, Press Information, 14August1972.
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

D. B. Keck, P. C. Schultz, and F. Zimar, Appl. Phys. Lett. 21, 215 (1972); See also: Corning Glass Works, Press Information, 14August1972.
[Crossref]

T. C. Rich and D. A. Pinnow, Appl. Phys. Lett. 20, 264 (1972).
[Crossref]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. E (1)

M. W. Jones and K. C. Kao, J. Phys. E 2, 331 (1969).
[Crossref]

Opto-Electron. (1)

P. J. R. Laybourn, W. A. Gambling, and D. T. Jones, Opto-Electron. 3, 137 (1971).
[Crossref]

Other (3)

Amersil, Inc., Catalog No. EM 9227-1, SP-SM-12-71.

S. E. Miller and E. A. J. Marcatili (Bell Laboratories, Holmdel, N. J.), private communication.

Supplied by Infrared Industries, Waltham, Mass.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Radiation pattern of an unclad fiber immersed in a higher-index liquid. Length of liquid cell, D1; A is position of slotted silicon solar cell for total-loss measurement; B represents pin-hole detector for scanning the radiation pattern at distance D2 behind the glass-walled liquid cell.

Fig. 2
Fig. 2

Output power as function of the length l of glycerol immersion for different-diameter, unclad, fused-silica fibers with LED excitation: (a) 250 μm, (b) 165 μm, (c) 72-μm diameter.

Fig. 3
Fig. 3

Typical mode spectra of a 140-μm-diameter, 20-m-long Suprasil 1 unclad fiber excited with (a) a Xe arc lamp (λ = 800 nm, Δλ = 100 Å), (b) LED (λ = 795 nm, Δλ = 350 Å); Nmax = 300 000, D1 = 2 cm, D2 = 2.1 cm.

Fig. 4
Fig. 4

Automated spectral-loss measuring set. (a) 75-W Xe arc lamp, (b) variable iris, (c) motor-driven filter wheel with thirty-five 100-Å filters (500–1120 nm), (d) variable-speed light chopper, (e) focusing lens (f = 3.5 cm), (f) thin glass plate, (g) silicon detector, (h) FEP support, (i) liquid-filled, slotted vessel with detector, (j) lock-in amplifiers, (k) digital voltmeters, (l) bidirectional data coupler and controller, (m) teletype machine, (n) wheel and instrument control.

Fig. 5
Fig. 5

Spectral losses of a Suprasil W1 unclad fiber with different surface cleanliness (a) without, (b) and (c) with cleaning.

Fig. 6
Fig. 6

Spectral losses of a Suprasil W2 unclad fiber with different surface cleanliness; L1 = 19 m, d = 140 μm.

Fig. 7
Fig. 7

Spectral excess losses due to contamination of the unclad fiber surface for two different cleanliness conditions. (a) See Fig. 5, (a)–(c); (b) see Fig. 6.

Fig. 8
Fig. 8

Identically low spectral losses of two Suprasil 1 fibers pulled at different times; L =21 m, d ≃ 190 μm; (a) Fiber cleaned With Windex®, (b) fiber measured as drawn.

Fig. 9
Fig. 9

(a) Total, (b) approximate scattering, and (c) absorption losses of an unclad Suprasil 1 fiber as a function of wavelength.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n L = n ( 1 + δ ) ,             δ 1.
α l m = ( u l m 2 π n ) 2 ( λ 2 a 3 ) ( 2 δ ) 1 2 .
N = 8 π 2 ( a / λ ) 2 sin 2 ( θ N / 2 ) ,
N max = 4 π 2 ( a / λ ) 2
sin θ N ( 2 δ + 2 n 2 N N max ) 1 2 .
θ 0 = ( 2 δ ) 1 2 ,
R = ( D 1 + n L D 2 ) ( 2 δ + 2 n 2 N N max ) 1 2 .