Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Goos and L. Haenchen, Ann. Physik 1, 333 (1947); Ann. Physik 5, 251 (1949).
    [Crossref]
  2. H. Wolter, Z. Naturforschg. 5a, 143 (1950).
  3. A. Mazet, Ch. Imbert, and S. Huard, Compt. Rend. B 273, 592 (1971).
  4. Ch. Imbert, Phys. Rev. D 5, 787 (1972).
    [Crossref]
  5. R. H. Renard, J. Opt. Soc. Am. 54, 1190 (1964).
    [Crossref]
  6. H. K. V. Lotsch, J. Opt. Soc. Am. 58, 551 (1968). This paper contains an extensive list of references.
    [Crossref]
  7. M. Ricard, Nouv. Rev. d’Optique 4, 63 (1973).
    [Crossref]
  8. J. L. Agudin, Phys. Rev. 171, 1358 (1968). Agudin’s calculation is considered the best quantum analysis of the Goos-Haenchen effect (L. de Broglie and J. P. Vigier, Phys. Rev. Lett. 28, 1001 (1972)).
    [Crossref]
  9. E. P. Wigner, Phys. Rev. 98, 145 (1955), F. T. Smith, Phys. Rev. 118, 349 (1960), M. Froissart, M. L. Goldberger, and K. M. Watson, Phys. Rev. 131, 2820 (1963).
    [Crossref]
  10. In the limit of the critical angle, all models produce equal results. At grazing incidence (ϕ1→12π) the shift xE and the delay time tE tend to zero, whereas xM = xS and tM = tS become infinite. This behavior has been often used against the marked-wave method. However, the results of the stationary-phase method and of scattering theory exhibit the same feature.

1973 (1)

M. Ricard, Nouv. Rev. d’Optique 4, 63 (1973).
[Crossref]

1972 (1)

Ch. Imbert, Phys. Rev. D 5, 787 (1972).
[Crossref]

1971 (1)

A. Mazet, Ch. Imbert, and S. Huard, Compt. Rend. B 273, 592 (1971).

1968 (2)

H. K. V. Lotsch, J. Opt. Soc. Am. 58, 551 (1968). This paper contains an extensive list of references.
[Crossref]

J. L. Agudin, Phys. Rev. 171, 1358 (1968). Agudin’s calculation is considered the best quantum analysis of the Goos-Haenchen effect (L. de Broglie and J. P. Vigier, Phys. Rev. Lett. 28, 1001 (1972)).
[Crossref]

1964 (1)

1955 (1)

E. P. Wigner, Phys. Rev. 98, 145 (1955), F. T. Smith, Phys. Rev. 118, 349 (1960), M. Froissart, M. L. Goldberger, and K. M. Watson, Phys. Rev. 131, 2820 (1963).
[Crossref]

1950 (1)

H. Wolter, Z. Naturforschg. 5a, 143 (1950).

1947 (1)

F. Goos and L. Haenchen, Ann. Physik 1, 333 (1947); Ann. Physik 5, 251 (1949).
[Crossref]

Agudin, J. L.

J. L. Agudin, Phys. Rev. 171, 1358 (1968). Agudin’s calculation is considered the best quantum analysis of the Goos-Haenchen effect (L. de Broglie and J. P. Vigier, Phys. Rev. Lett. 28, 1001 (1972)).
[Crossref]

Goos, F.

F. Goos and L. Haenchen, Ann. Physik 1, 333 (1947); Ann. Physik 5, 251 (1949).
[Crossref]

Haenchen, L.

F. Goos and L. Haenchen, Ann. Physik 1, 333 (1947); Ann. Physik 5, 251 (1949).
[Crossref]

Huard, S.

A. Mazet, Ch. Imbert, and S. Huard, Compt. Rend. B 273, 592 (1971).

Imbert, Ch.

Ch. Imbert, Phys. Rev. D 5, 787 (1972).
[Crossref]

A. Mazet, Ch. Imbert, and S. Huard, Compt. Rend. B 273, 592 (1971).

Lotsch, H. K. V.

Mazet, A.

A. Mazet, Ch. Imbert, and S. Huard, Compt. Rend. B 273, 592 (1971).

Renard, R. H.

Ricard, M.

M. Ricard, Nouv. Rev. d’Optique 4, 63 (1973).
[Crossref]

Wigner, E. P.

E. P. Wigner, Phys. Rev. 98, 145 (1955), F. T. Smith, Phys. Rev. 118, 349 (1960), M. Froissart, M. L. Goldberger, and K. M. Watson, Phys. Rev. 131, 2820 (1963).
[Crossref]

Wolter, H.

H. Wolter, Z. Naturforschg. 5a, 143 (1950).

Ann. Physik (1)

F. Goos and L. Haenchen, Ann. Physik 1, 333 (1947); Ann. Physik 5, 251 (1949).
[Crossref]

Compt. Rend. B (1)

A. Mazet, Ch. Imbert, and S. Huard, Compt. Rend. B 273, 592 (1971).

J. Opt. Soc. Am. (2)

Nouv. Rev. d’Optique (1)

M. Ricard, Nouv. Rev. d’Optique 4, 63 (1973).
[Crossref]

Phys. Rev. (2)

J. L. Agudin, Phys. Rev. 171, 1358 (1968). Agudin’s calculation is considered the best quantum analysis of the Goos-Haenchen effect (L. de Broglie and J. P. Vigier, Phys. Rev. Lett. 28, 1001 (1972)).
[Crossref]

E. P. Wigner, Phys. Rev. 98, 145 (1955), F. T. Smith, Phys. Rev. 118, 349 (1960), M. Froissart, M. L. Goldberger, and K. M. Watson, Phys. Rev. 131, 2820 (1963).
[Crossref]

Phys. Rev. D (1)

Ch. Imbert, Phys. Rev. D 5, 787 (1972).
[Crossref]

Z. Naturforschg. (1)

H. Wolter, Z. Naturforschg. 5a, 143 (1950).

Other (1)

In the limit of the critical angle, all models produce equal results. At grazing incidence (ϕ1→12π) the shift xE and the delay time tE tend to zero, whereas xM = xS and tM = tS become infinite. This behavior has been often used against the marked-wave method. However, the results of the stationary-phase method and of scattering theory exhibit the same feature.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (9)

Equations on this page are rendered with MathJax. Learn more.

z < 0 : A 1 = e i ( n 1 k x sin ϕ 1 - ω t ) ( e i n 1 k z cos ϕ 1 + R e - i n 1 k z cos ϕ 1 ) z > 0 : A 2 = e i ( n 2 k x sin ϕ 2 - ω t ) T e - K z .
R = ( a cos ϕ 1 - i b K / n 2 k ) / ( a cos ϕ 1 + i b K / n 2 k ) , T = 2 n 1 cos ϕ 1 / ( a cos ϕ 1 + i b K / n 2 k ) .
x M = - ( n 1 k cos ϕ 1 ) - 1 Im ( ln R / ϕ 1 ) = 2 ( n 1 2 - n 2 2 ) tan ϕ 1 / ρ K ,
x E = n 2 sin ϕ 2 0 A 2 * A 2 d z / n 1 cos ϕ 1 = 1 2 T * T tan ϕ 1 / K = 2 n 1 2 sin ϕ 1 cos ϕ 1 / ρ K .
z < 0 : A ˜ 1 = e i ( n 1 k x sin ϕ 1 - ω t ) ( e i n 1 k z cos ϕ 1 ± R e - i n 1 k z cos ϕ 1 ) ,             R = 1 z > 0 : A ˜ 2 = 0.
t S = { n 1 2 z - 0 ( A 1 * A 1 - A ˜ 1 * A ˜ 1 ) d z + n 2 2 0 A 2 * A 2 d z } / c n 1 cos ϕ 1 = 2 n 1 ( n 1 2 - n 2 2 ) sin 2 ϕ 1 / c K ρ cos ϕ 1 ,
t M = Im ( ln R / ω ) - Im ( ln R / ω ϕ 1 ) tan ϕ 1
t E = n 2 2 0 A 2 * A 2 d z / c n 1 cos ϕ 1 = 2 n 1 n 2 2 cos ϕ 1 / c K ρ ,
x S = { n 1 sin ϕ 1 z - ( A 1 * A 1 - A ˜ 1 * A ˜ 1 ) d z + n 2 sin ϕ 2 0 A 2 * A 2 d z } / n 1 cos ϕ 1 .