Abstract

We demonstrate that the theories of strong irradiance fluctuations of Yura and Clifford <i>et al.</i>, although they start from slightly different physical models, produce the same predictions for the behavior of an optical wave propagating through strong turbulence. Both theories predict a saturation of the irradiance variance and that in the saturation regime the amplitude correlation length is equal to the lateral coherence length of the optical wave. The detailed structure of the amplitude correlation functions is also similar, showing a more-rapid decay at the origin and an enhanced tail at large separations in comparison to the results of the weak scattering theory.

PDF Article

References

  • View by:
  • |
  • |

  1. H. T. Yura, J. Opt. Soc. Am. 64, 59 (1974).
  2. S. F. Clifford, G. R. Ochs, and R. S. Lawrence, J. Opt. Soc. Am. 64,148 (1974).
  3. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (National Technical Information Service, U. S. Dept. of Commerce, Springfield, Va., 1971), Ch. 3.
  4. As is shown below, the main contribution to the y integral occurs for yT2) 6/5≫1. Therefore, in calculating I2, the Bessel function occurring in the expression for ƒ(y) can be neglected.
  5. The same asymptotic limit is also obtained for plane waves (assuming, of course, the same value for α).
  6. M. E. Gracheva, A. S. Gurvich, S. S. Kashkarov, and V. V. Pokasov, Akad. Nauk SSSR. Otd. Okean., Fiz., Atm. Geogr., Moscow (1973).
  7. H. T. Yura, J. Opt. Soc. Am. 64, 357 (1974).

Clifford, S. F.

S. F. Clifford, G. R. Ochs, and R. S. Lawrence, J. Opt. Soc. Am. 64,148 (1974).

Gracheva, M. E.

M. E. Gracheva, A. S. Gurvich, S. S. Kashkarov, and V. V. Pokasov, Akad. Nauk SSSR. Otd. Okean., Fiz., Atm. Geogr., Moscow (1973).

Gurvich, A. S.

M. E. Gracheva, A. S. Gurvich, S. S. Kashkarov, and V. V. Pokasov, Akad. Nauk SSSR. Otd. Okean., Fiz., Atm. Geogr., Moscow (1973).

Kashkarov, S. S.

M. E. Gracheva, A. S. Gurvich, S. S. Kashkarov, and V. V. Pokasov, Akad. Nauk SSSR. Otd. Okean., Fiz., Atm. Geogr., Moscow (1973).

Lawrence, R. S.

S. F. Clifford, G. R. Ochs, and R. S. Lawrence, J. Opt. Soc. Am. 64,148 (1974).

Ochs, G. R.

S. F. Clifford, G. R. Ochs, and R. S. Lawrence, J. Opt. Soc. Am. 64,148 (1974).

Pokasov, V. V.

M. E. Gracheva, A. S. Gurvich, S. S. Kashkarov, and V. V. Pokasov, Akad. Nauk SSSR. Otd. Okean., Fiz., Atm. Geogr., Moscow (1973).

Tatarskii, V. I.

V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (National Technical Information Service, U. S. Dept. of Commerce, Springfield, Va., 1971), Ch. 3.

Yura, H. T.

H. T. Yura, J. Opt. Soc. Am. 64, 357 (1974).

H. T. Yura, J. Opt. Soc. Am. 64, 59 (1974).

Other (7)

H. T. Yura, J. Opt. Soc. Am. 64, 59 (1974).

S. F. Clifford, G. R. Ochs, and R. S. Lawrence, J. Opt. Soc. Am. 64,148 (1974).

V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (National Technical Information Service, U. S. Dept. of Commerce, Springfield, Va., 1971), Ch. 3.

As is shown below, the main contribution to the y integral occurs for yT2) 6/5≫1. Therefore, in calculating I2, the Bessel function occurring in the expression for ƒ(y) can be neglected.

The same asymptotic limit is also obtained for plane waves (assuming, of course, the same value for α).

M. E. Gracheva, A. S. Gurvich, S. S. Kashkarov, and V. V. Pokasov, Akad. Nauk SSSR. Otd. Okean., Fiz., Atm. Geogr., Moscow (1973).

H. T. Yura, J. Opt. Soc. Am. 64, 357 (1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.