Abstract

Equations are developed for Mie scattering by spheres (particles, bubbles, or voids) embedded in an absorbing medium. Computations demonstrate that under certain conditions the extinction-efficiency factor, Qext, can be less than the scattering-efficiency factor, Qs. In fact, Qext, as commonly defined, can be negative. Also, results are shown for the angular scattering distribution by a void, which indicate that the intensity of the backward-scattered light can be greater than the forward-scattered light.

© 1974 Optical Society of America

Full Article  |  PDF Article
Related Articles
Nonunitarity of the light scattering approximations

Petr Chýlek and R. G. Pinnick
Appl. Opt. 18(8) 1123-1124 (1979)

Internal absorption cross sections in a stratified sphere

D. W. Mackowski, R. A. Altenkirch, and M. P. Menguc
Appl. Opt. 29(10) 1551-1559 (1990)

Resonances of a dielectric sphere illuminated by two counterpropagating plane waves

J. Li and Petr Chýlek
J. Opt. Soc. Am. A 10(4) 687-692 (1993)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription