Abstract

By use of a blur-pseudostimulus technique and high-speed infrared optometric measurements, the singularity of blur as a stimulus to human accommodation was studied. Blur is not the sole stimulus; it is a necessary cue, but not a sufficient one. The accommodative system makes use of one or more available odd-error (error sign) cues, which are believed to supplement blur with requisite focusing information.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. F. Fincham, Br. J. Ophthalmol. 35, 381 (1951).
  2. E. F. Fincham, Proc. Phys. Soc. Lond. 49, 456 (1937).
    [Crossref]
  3. L. Stark and Y. Takahashi, IEEE Trans. Bio.-Med. Eng. BME-12, 138 (1965).
    [Crossref]
  4. N. Roth, Rev. Sci. Instrum. 36, 1636 (1965).
    [Crossref] [PubMed]
  5. An even-error signal provides magnitude but no sign information about focusing errors. An odd-error signal does provide sign information.
  6. By the average absolute value of the response, we mean [∑1n|Rj(t) − R(0−)|]/n not [|∑1nRj(t)|]/n, where the Rj are the individual lens responses.
  7. K. Fujii, K. Kondo, and T. Kasai, Tech. Rep. Osaka Univ. 20, 925 (1970).
  8. W. D. O’Neill, C. K. Sanathanan, and J. S. Brodkey, IEEE Trans. Systems Science and Cybernetics SSC-5, 290 (1968).
  9. K. N. Ogle and J. R. Schwartz, J. Opt. Soc. Am. 49, 273 (1959).
    [Crossref] [PubMed]
  10. Individual variability in both need and efficacy of odd-error cues has been widely reported [E. F. Fincham, Br. J. Ophthalmol. 35, 381 (1951);Merrill J. Allen, Am. J. Opt. 32, 422 (1955); A. Troelstra, B. L. Zuber, D. Miller, and L. Stark, Vision Res. 4, 27 (1964); F. W. Campbell and G. Westheimer, J. Opt. Soc. Am. 49, 568 (1959)].
    [Crossref] [PubMed]
  11. F. W. Campbell and G. Westheimer, J. Opt. Soc. Am. 49, 568 (1959).
    [Crossref] [PubMed]
  12. T. N. Cornsweet and H. D. Crane, (1972).
  13. A. Troelstra, B. L. Zuber, D. Miller, and L. Stark, Vision Res. 4, 27 (1964).
    [Crossref]

1970 (1)

K. Fujii, K. Kondo, and T. Kasai, Tech. Rep. Osaka Univ. 20, 925 (1970).

1968 (1)

W. D. O’Neill, C. K. Sanathanan, and J. S. Brodkey, IEEE Trans. Systems Science and Cybernetics SSC-5, 290 (1968).

1965 (2)

L. Stark and Y. Takahashi, IEEE Trans. Bio.-Med. Eng. BME-12, 138 (1965).
[Crossref]

N. Roth, Rev. Sci. Instrum. 36, 1636 (1965).
[Crossref] [PubMed]

1964 (1)

A. Troelstra, B. L. Zuber, D. Miller, and L. Stark, Vision Res. 4, 27 (1964).
[Crossref]

1959 (2)

1951 (2)

Individual variability in both need and efficacy of odd-error cues has been widely reported [E. F. Fincham, Br. J. Ophthalmol. 35, 381 (1951);Merrill J. Allen, Am. J. Opt. 32, 422 (1955); A. Troelstra, B. L. Zuber, D. Miller, and L. Stark, Vision Res. 4, 27 (1964); F. W. Campbell and G. Westheimer, J. Opt. Soc. Am. 49, 568 (1959)].
[Crossref] [PubMed]

E. F. Fincham, Br. J. Ophthalmol. 35, 381 (1951).

1937 (1)

E. F. Fincham, Proc. Phys. Soc. Lond. 49, 456 (1937).
[Crossref]

Brodkey, J. S.

W. D. O’Neill, C. K. Sanathanan, and J. S. Brodkey, IEEE Trans. Systems Science and Cybernetics SSC-5, 290 (1968).

Campbell, F. W.

Cornsweet, T. N.

T. N. Cornsweet and H. D. Crane, (1972).

Crane, H. D.

T. N. Cornsweet and H. D. Crane, (1972).

Fincham, E. F.

Individual variability in both need and efficacy of odd-error cues has been widely reported [E. F. Fincham, Br. J. Ophthalmol. 35, 381 (1951);Merrill J. Allen, Am. J. Opt. 32, 422 (1955); A. Troelstra, B. L. Zuber, D. Miller, and L. Stark, Vision Res. 4, 27 (1964); F. W. Campbell and G. Westheimer, J. Opt. Soc. Am. 49, 568 (1959)].
[Crossref] [PubMed]

E. F. Fincham, Br. J. Ophthalmol. 35, 381 (1951).

E. F. Fincham, Proc. Phys. Soc. Lond. 49, 456 (1937).
[Crossref]

Fujii, K.

K. Fujii, K. Kondo, and T. Kasai, Tech. Rep. Osaka Univ. 20, 925 (1970).

Kasai, T.

K. Fujii, K. Kondo, and T. Kasai, Tech. Rep. Osaka Univ. 20, 925 (1970).

Kondo, K.

K. Fujii, K. Kondo, and T. Kasai, Tech. Rep. Osaka Univ. 20, 925 (1970).

Miller, D.

A. Troelstra, B. L. Zuber, D. Miller, and L. Stark, Vision Res. 4, 27 (1964).
[Crossref]

O’Neill, W. D.

W. D. O’Neill, C. K. Sanathanan, and J. S. Brodkey, IEEE Trans. Systems Science and Cybernetics SSC-5, 290 (1968).

Ogle, K. N.

Roth, N.

N. Roth, Rev. Sci. Instrum. 36, 1636 (1965).
[Crossref] [PubMed]

Sanathanan, C. K.

W. D. O’Neill, C. K. Sanathanan, and J. S. Brodkey, IEEE Trans. Systems Science and Cybernetics SSC-5, 290 (1968).

Schwartz, J. R.

Stark, L.

L. Stark and Y. Takahashi, IEEE Trans. Bio.-Med. Eng. BME-12, 138 (1965).
[Crossref]

A. Troelstra, B. L. Zuber, D. Miller, and L. Stark, Vision Res. 4, 27 (1964).
[Crossref]

Takahashi, Y.

L. Stark and Y. Takahashi, IEEE Trans. Bio.-Med. Eng. BME-12, 138 (1965).
[Crossref]

Troelstra, A.

A. Troelstra, B. L. Zuber, D. Miller, and L. Stark, Vision Res. 4, 27 (1964).
[Crossref]

Westheimer, G.

Zuber, B. L.

A. Troelstra, B. L. Zuber, D. Miller, and L. Stark, Vision Res. 4, 27 (1964).
[Crossref]

Br. J. Ophthalmol. (2)

E. F. Fincham, Br. J. Ophthalmol. 35, 381 (1951).

Individual variability in both need and efficacy of odd-error cues has been widely reported [E. F. Fincham, Br. J. Ophthalmol. 35, 381 (1951);Merrill J. Allen, Am. J. Opt. 32, 422 (1955); A. Troelstra, B. L. Zuber, D. Miller, and L. Stark, Vision Res. 4, 27 (1964); F. W. Campbell and G. Westheimer, J. Opt. Soc. Am. 49, 568 (1959)].
[Crossref] [PubMed]

IEEE Trans. Bio.-Med. Eng. (1)

L. Stark and Y. Takahashi, IEEE Trans. Bio.-Med. Eng. BME-12, 138 (1965).
[Crossref]

IEEE Trans. Systems Science and Cybernetics (1)

W. D. O’Neill, C. K. Sanathanan, and J. S. Brodkey, IEEE Trans. Systems Science and Cybernetics SSC-5, 290 (1968).

J. Opt. Soc. Am. (2)

Proc. Phys. Soc. Lond. (1)

E. F. Fincham, Proc. Phys. Soc. Lond. 49, 456 (1937).
[Crossref]

Rev. Sci. Instrum. (1)

N. Roth, Rev. Sci. Instrum. 36, 1636 (1965).
[Crossref] [PubMed]

Tech. Rep. Osaka Univ. (1)

K. Fujii, K. Kondo, and T. Kasai, Tech. Rep. Osaka Univ. 20, 925 (1970).

Vision Res. (1)

A. Troelstra, B. L. Zuber, D. Miller, and L. Stark, Vision Res. 4, 27 (1964).
[Crossref]

Other (3)

T. N. Cornsweet and H. D. Crane, (1972).

An even-error signal provides magnitude but no sign information about focusing errors. An odd-error signal does provide sign information.

By the average absolute value of the response, we mean [∑1n|Rj(t) − R(0−)|]/n not [|∑1nRj(t)|]/n, where the Rj are the individual lens responses.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Stimulus-apparatus schematic. The source consisted of bulb (WL), condenser lens (L1), and diffusing filter (D1). Photographic slide (PS) was mounted on an XY-plotter-pen movement (YC). An image of PS was projected onto fine-grain diffusing screen (D2) via lens L3 and mirror M. All the above optics were mounted on the XY-plotter-carriage movement (XC). Direction of movement is indicated by a double-headed arrow. Target is shown to the subject’s right eye (RE) in maxwellian view via lens L3. Target and optometer axes are labelled TA and OA, respectively.

Fig. 2
Fig. 2

The stimuli and their retinal images. Note: State of refraction is 4D. In A–D, RT is the retina, LE the dioptric apparatus, and TG is the target. A, S = (4, 0); B, S = (3, 0); C, S = (5, 0); D, S = (4, 1). Blurred target is represented by a line source (D) rather than a point source (A, B, and C). Light is shown travelling from right to left.

Fig. 3
Fig. 3

Average responses of a typical emmetropic subject. Ordinates display instantaneous state of refraction. (Note changes of scale.) Abscissas are time. Stimuli are steps presented at t = 0. (A) and (B); control responses; (C) and (D) blur-depletion experiments; (E) blur alone.

Fig. 4
Fig. 4

Correct initial refocusing attempts as a function of error criterion (based on 106 samples).

Fig. 5
Fig. 5

Typical standard deviations of responses to true refractive stimuli.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Q = 10 D - x s ( D / cm ) ,
E r = 2.5 Δ u / p ( D ) ,