Abstract

On the basis of a semiclassical approach, the dynamic polarizability and the index of refraction of helium near 1 <sup>1</sup><i>S</i>-2 <sup>1</sup><i>P</i> resonance are calculated. The steady-state solution of the Schrödinger equation used is well behaved at resonance; hence the decay width, in the Weisskopf and Wigner theory, need not be introduced. The result agrees, in essence, with the results of the Weisskopf and Wigner theory if the irradiance is weak. For great irradiance, the results differ significantly over a broad range of frequencies.

PDF Article

References

  • View by:
  • |
  • |

  1. D. S. Rozhdestvenskii, Tr. Gos. Opt. Inst. 2, (13) (1922).
  2. V. K. Prokofev, Tr. Gos. Opt. Inst. 3, (25) 1 (1924).
  3. V. F. Weisskopf and E. P. Wigner, Z. Phys. 63, 54 (1930).
  4. S. A. Korff and G. Breit, Rev. Mod. Phys. 4, 471 (1932).
  5. I. I. Rabi, Phys. Rev. 51, 652 (1937).
  6. N. F. Ramsey, Molecular Beams (Oxford U. P., London, 1956).
  7. C. Cohen-Tannoudji and S. Haroche, J. Phys. (Paris) 30, 125 (1969); J. Phys. (Paris) 30, 153 (1969).
  8. J. H. Shirley, Phys. Rev. 138, B979 (1965).
  9. D. T. Pegg, Phys. Rev. A 8, 2214 (1973).
  10. K. T. Chung, Phys. Rev. 166, 1 (1967).
  11. G. Lochak and M. Thiounn, C. R. Acad. Sci. B 264, 1533 (1967).
  12. S. Pancharatnam, Proc. R. Soc. Lond. A 330, 281 (1972).
  13. This steady-state result can be obtained by using the timedependent phase-factor perturbation method [see K. T. Chung, Phys. Rev. 163, 1343 (1967)] and by summing the divergent term in the perturbation series to infinite orders. The validity of this solution can be proved by a direct substitution into the Schrödinger equation.
  14. A. Sommerfeld, Electrodynamics (Academic, New York, 1954), p. 75.
  15. B. Schiff and C. L. Pekeris, Phys. Rev. 134, A638 (1964).
  16. C. L. Pekeris, B. Schiff, and H. Lifson, Phys. Rev. 126, 1057 (1962).

Breit, G.

S. A. Korff and G. Breit, Rev. Mod. Phys. 4, 471 (1932).

Chung, K. T.

K. T. Chung, Phys. Rev. 166, 1 (1967).

Cohen-Tannoudji, C.

C. Cohen-Tannoudji and S. Haroche, J. Phys. (Paris) 30, 125 (1969); J. Phys. (Paris) 30, 153 (1969).

Haroche, S.

C. Cohen-Tannoudji and S. Haroche, J. Phys. (Paris) 30, 125 (1969); J. Phys. (Paris) 30, 153 (1969).

Korff, S. A.

S. A. Korff and G. Breit, Rev. Mod. Phys. 4, 471 (1932).

Lifson, H.

C. L. Pekeris, B. Schiff, and H. Lifson, Phys. Rev. 126, 1057 (1962).

Lochak, G.

G. Lochak and M. Thiounn, C. R. Acad. Sci. B 264, 1533 (1967).

Pancharatnam, S.

S. Pancharatnam, Proc. R. Soc. Lond. A 330, 281 (1972).

Pegg, D. T.

D. T. Pegg, Phys. Rev. A 8, 2214 (1973).

Pekeris, C. L.

B. Schiff and C. L. Pekeris, Phys. Rev. 134, A638 (1964).

C. L. Pekeris, B. Schiff, and H. Lifson, Phys. Rev. 126, 1057 (1962).

Prokofev, V. K.

V. K. Prokofev, Tr. Gos. Opt. Inst. 3, (25) 1 (1924).

Rabi, I. I.

I. I. Rabi, Phys. Rev. 51, 652 (1937).

Ramsey, N. F.

N. F. Ramsey, Molecular Beams (Oxford U. P., London, 1956).

Rozhdestvenskii, D. S.

D. S. Rozhdestvenskii, Tr. Gos. Opt. Inst. 2, (13) (1922).

Schiff, B.

C. L. Pekeris, B. Schiff, and H. Lifson, Phys. Rev. 126, 1057 (1962).

B. Schiff and C. L. Pekeris, Phys. Rev. 134, A638 (1964).

Shirley, J. H.

J. H. Shirley, Phys. Rev. 138, B979 (1965).

Sommerfeld, A.

A. Sommerfeld, Electrodynamics (Academic, New York, 1954), p. 75.

Thiounn, M.

G. Lochak and M. Thiounn, C. R. Acad. Sci. B 264, 1533 (1967).

Weisskopf, V. F.

V. F. Weisskopf and E. P. Wigner, Z. Phys. 63, 54 (1930).

Wigner, E. P.

V. F. Weisskopf and E. P. Wigner, Z. Phys. 63, 54 (1930).

Other (16)

D. S. Rozhdestvenskii, Tr. Gos. Opt. Inst. 2, (13) (1922).

V. K. Prokofev, Tr. Gos. Opt. Inst. 3, (25) 1 (1924).

V. F. Weisskopf and E. P. Wigner, Z. Phys. 63, 54 (1930).

S. A. Korff and G. Breit, Rev. Mod. Phys. 4, 471 (1932).

I. I. Rabi, Phys. Rev. 51, 652 (1937).

N. F. Ramsey, Molecular Beams (Oxford U. P., London, 1956).

C. Cohen-Tannoudji and S. Haroche, J. Phys. (Paris) 30, 125 (1969); J. Phys. (Paris) 30, 153 (1969).

J. H. Shirley, Phys. Rev. 138, B979 (1965).

D. T. Pegg, Phys. Rev. A 8, 2214 (1973).

K. T. Chung, Phys. Rev. 166, 1 (1967).

G. Lochak and M. Thiounn, C. R. Acad. Sci. B 264, 1533 (1967).

S. Pancharatnam, Proc. R. Soc. Lond. A 330, 281 (1972).

This steady-state result can be obtained by using the timedependent phase-factor perturbation method [see K. T. Chung, Phys. Rev. 163, 1343 (1967)] and by summing the divergent term in the perturbation series to infinite orders. The validity of this solution can be proved by a direct substitution into the Schrödinger equation.

A. Sommerfeld, Electrodynamics (Academic, New York, 1954), p. 75.

B. Schiff and C. L. Pekeris, Phys. Rev. 134, A638 (1964).

C. L. Pekeris, B. Schiff, and H. Lifson, Phys. Rev. 126, 1057 (1962).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.