Abstract

Optical fibers that possess the characteristics of both conventional cladded fibers and of a new type of fiber have been drawn and evaluated. The core has an equilateral triangular cross section with slightly bulging curved sides. The rounded vertices are in contact with the inside of the cladding tube of lower refractive index. Most of ther periphery of the core is surrounded by air. The cavity-like waveguide modes of this new type of fiber can be described as due to skew rays being reflected systematically from the glass-to-air interfaces as they propagate along the fiber. Near-field and far-field radiation patterns have been photographed and are presented. A new type of laser based on these cavity-like waveguide modes is proposed, in which the triangular core is made of a material (e.g., neodymium-doped glass, YAG, etc.) that can be optically pumped. The normal mode of operation of the laser consists of six diverging, spatially separated output beams; it can be optically pumped axially from both ends simultaneously, while being pumped from the sides.

© 1974 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |

  1. T. Uchida, M. Furukawa, I. Kitano, K. Koizumi, and H. Matsumura, IEEE J. Quant. Electron. 5, 331 (1969).
  2. P. Kaiser, E. A. J. Marcatili, and S. E. Miller, Bell. Syst. Tech. J. 72, 265 (1973).
  3. U. S. Patent No. 3,712,705 issued to E. A. S. Marcatili on 23 January 1973. This patent describes a generalized polygonal-cored fiber as well as the equilaterial-triangular-cored fiber.
  4. A. D. Pearson and W. G. French, Bell Lab. Rec. 50, 102 (1972).
  5. R. B. Dyott, C. R. Day, and M. C. Brain, Electron. Lett. 9, 288 (1973).
  6. N. S. Kapany, Fiber Optics (Academic, New York, 1967), p. 9.
  7. For this purpose, Zeiss UD/20 or UD/40 objectives are convenient because a 3-mm-diam opaque mask can easily be attached to the lens surface closest to the object being viewed.
  8. The direction of rotation is arbitrary. What is clear is that the two sets of three modes rotate in opposite directions.
  9. S. D. Personick, Bell Syst. Tech. J. 50, 843 (1971).
  10. Hans Mueller, J. Am. Ceramic Soc. 21, 27 (1938).
  11. P. Kaiser, A. R. Tynes, H. W. Astle, A. D. Pearson, W. G. French, R. E. Jaeger, and A. H. Cherin, J. Opt. Soc. Am. 63, 1141 (1973).
  12. Losses expressed in dB/km can be converted to cm-1 by dividing by 4.34 × 105.
  13. Reference 6, p. 10. Equation (2.7) applies to meridional rays and is only approximately true for skew rays.
  14. J. B. Keller and S. J. Rubinow, Ann. Phys. 9, 24 (1960).
  15. E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).
  16. J. E. Goell, Bell Syst. Tech. J. 48, 2133 (1969).

Astle, H. W.

P. Kaiser, A. R. Tynes, H. W. Astle, A. D. Pearson, W. G. French, R. E. Jaeger, and A. H. Cherin, J. Opt. Soc. Am. 63, 1141 (1973).

Brain, M. C.

R. B. Dyott, C. R. Day, and M. C. Brain, Electron. Lett. 9, 288 (1973).

Cherin, A. H.

P. Kaiser, A. R. Tynes, H. W. Astle, A. D. Pearson, W. G. French, R. E. Jaeger, and A. H. Cherin, J. Opt. Soc. Am. 63, 1141 (1973).

Day, C. R.

R. B. Dyott, C. R. Day, and M. C. Brain, Electron. Lett. 9, 288 (1973).

Dyott, R. B.

R. B. Dyott, C. R. Day, and M. C. Brain, Electron. Lett. 9, 288 (1973).

French, W. G.

P. Kaiser, A. R. Tynes, H. W. Astle, A. D. Pearson, W. G. French, R. E. Jaeger, and A. H. Cherin, J. Opt. Soc. Am. 63, 1141 (1973).

A. D. Pearson and W. G. French, Bell Lab. Rec. 50, 102 (1972).

Furukawa, M.

T. Uchida, M. Furukawa, I. Kitano, K. Koizumi, and H. Matsumura, IEEE J. Quant. Electron. 5, 331 (1969).

Goell, J. E.

J. E. Goell, Bell Syst. Tech. J. 48, 2133 (1969).

Jaeger, R. E.

P. Kaiser, A. R. Tynes, H. W. Astle, A. D. Pearson, W. G. French, R. E. Jaeger, and A. H. Cherin, J. Opt. Soc. Am. 63, 1141 (1973).

Kaiser, P.

P. Kaiser, A. R. Tynes, H. W. Astle, A. D. Pearson, W. G. French, R. E. Jaeger, and A. H. Cherin, J. Opt. Soc. Am. 63, 1141 (1973).

P. Kaiser, E. A. J. Marcatili, and S. E. Miller, Bell. Syst. Tech. J. 72, 265 (1973).

Kapany, N. S.

N. S. Kapany, Fiber Optics (Academic, New York, 1967), p. 9.

Keller, J. B.

J. B. Keller and S. J. Rubinow, Ann. Phys. 9, 24 (1960).

Kitano, I.

T. Uchida, M. Furukawa, I. Kitano, K. Koizumi, and H. Matsumura, IEEE J. Quant. Electron. 5, 331 (1969).

Koizumi, K.

T. Uchida, M. Furukawa, I. Kitano, K. Koizumi, and H. Matsumura, IEEE J. Quant. Electron. 5, 331 (1969).

Marcatili, E. A. J.

P. Kaiser, E. A. J. Marcatili, and S. E. Miller, Bell. Syst. Tech. J. 72, 265 (1973).

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).

Marcatili, E. A. S.

U. S. Patent No. 3,712,705 issued to E. A. S. Marcatili on 23 January 1973. This patent describes a generalized polygonal-cored fiber as well as the equilaterial-triangular-cored fiber.

Matsumura, H.

T. Uchida, M. Furukawa, I. Kitano, K. Koizumi, and H. Matsumura, IEEE J. Quant. Electron. 5, 331 (1969).

Miller, S. E.

P. Kaiser, E. A. J. Marcatili, and S. E. Miller, Bell. Syst. Tech. J. 72, 265 (1973).

Mueller, Hans

Hans Mueller, J. Am. Ceramic Soc. 21, 27 (1938).

Pearson, A. D.

A. D. Pearson and W. G. French, Bell Lab. Rec. 50, 102 (1972).

P. Kaiser, A. R. Tynes, H. W. Astle, A. D. Pearson, W. G. French, R. E. Jaeger, and A. H. Cherin, J. Opt. Soc. Am. 63, 1141 (1973).

Personick, S. D.

S. D. Personick, Bell Syst. Tech. J. 50, 843 (1971).

Rubinow, S. J.

J. B. Keller and S. J. Rubinow, Ann. Phys. 9, 24 (1960).

Tynes, A. R.

P. Kaiser, A. R. Tynes, H. W. Astle, A. D. Pearson, W. G. French, R. E. Jaeger, and A. H. Cherin, J. Opt. Soc. Am. 63, 1141 (1973).

Uchida, T.

T. Uchida, M. Furukawa, I. Kitano, K. Koizumi, and H. Matsumura, IEEE J. Quant. Electron. 5, 331 (1969).

Other

T. Uchida, M. Furukawa, I. Kitano, K. Koizumi, and H. Matsumura, IEEE J. Quant. Electron. 5, 331 (1969).

P. Kaiser, E. A. J. Marcatili, and S. E. Miller, Bell. Syst. Tech. J. 72, 265 (1973).

U. S. Patent No. 3,712,705 issued to E. A. S. Marcatili on 23 January 1973. This patent describes a generalized polygonal-cored fiber as well as the equilaterial-triangular-cored fiber.

A. D. Pearson and W. G. French, Bell Lab. Rec. 50, 102 (1972).

R. B. Dyott, C. R. Day, and M. C. Brain, Electron. Lett. 9, 288 (1973).

N. S. Kapany, Fiber Optics (Academic, New York, 1967), p. 9.

For this purpose, Zeiss UD/20 or UD/40 objectives are convenient because a 3-mm-diam opaque mask can easily be attached to the lens surface closest to the object being viewed.

The direction of rotation is arbitrary. What is clear is that the two sets of three modes rotate in opposite directions.

S. D. Personick, Bell Syst. Tech. J. 50, 843 (1971).

Hans Mueller, J. Am. Ceramic Soc. 21, 27 (1938).

P. Kaiser, A. R. Tynes, H. W. Astle, A. D. Pearson, W. G. French, R. E. Jaeger, and A. H. Cherin, J. Opt. Soc. Am. 63, 1141 (1973).

Losses expressed in dB/km can be converted to cm-1 by dividing by 4.34 × 105.

Reference 6, p. 10. Equation (2.7) applies to meridional rays and is only approximately true for skew rays.

J. B. Keller and S. J. Rubinow, Ann. Phys. 9, 24 (1960).

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).

J. E. Goell, Bell Syst. Tech. J. 48, 2133 (1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.