Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Mueller and F. P. Carlson, J. Opt. Soc. Am. 63, 293 (1973).
    [Crossref]
  2. See, for example, J. M. Cowley and A. F. Moodie, Proc. Phys. Soc. (Lond.) B70, 486 (1957).
  3. A. Lohmann, in Proceedings of the Conference on Optical Instruments and Techniques, edited by K. J. Habel (Chapman and Hall, London, 1962), p. 58.

1973 (1)

1957 (1)

See, for example, J. M. Cowley and A. F. Moodie, Proc. Phys. Soc. (Lond.) B70, 486 (1957).

Carlson, F. P.

Cowley, J. M.

See, for example, J. M. Cowley and A. F. Moodie, Proc. Phys. Soc. (Lond.) B70, 486 (1957).

Lohmann, A.

A. Lohmann, in Proceedings of the Conference on Optical Instruments and Techniques, edited by K. J. Habel (Chapman and Hall, London, 1962), p. 58.

Moodie, A. F.

See, for example, J. M. Cowley and A. F. Moodie, Proc. Phys. Soc. (Lond.) B70, 486 (1957).

Mueller, M. R.

J. Opt. Soc. Am. (1)

Proc. Phys. Soc. (Lond.) (1)

See, for example, J. M. Cowley and A. F. Moodie, Proc. Phys. Soc. (Lond.) B70, 486 (1957).

Other (1)

A. Lohmann, in Proceedings of the Conference on Optical Instruments and Techniques, edited by K. J. Habel (Chapman and Hall, London, 1962), p. 58.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

A periodic object, placed in plane P, is illuminated by a parallel beam of monochromatic light. The diffracted amplitude is calculated in the plane P1.

Fig. 2
Fig. 2

Planes I and I′ are conjugate to planes O and O′, respectively.

Fig. 3
Fig. 3

The periodic object in plane P is illuminated by a spherical beam of light.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

U ( x ) = a + b cos 2 π N x ,
U ( x 1 ) = exp [ j k d ] j λ d [ a + b cos 2 π N x 1 exp ( - j π N 2 λ d ) ] ,
I ( x 1 ) = a 2 + 1 2 b 2 + 2 a b cos 2 π N x 1 cos π N 2 λ d + 1 2 b 2 cos 4 π N x 1 .
V = I max - I min I max + I min = 4 a b 2 a 2 + b 2 cos π N 2 λ d .
N 2 λ d = ± 2 n             [ n = 0 , 1 , 2 , ]
N 2 λ d = ± ( 2 n + 1 )
N 2 λ d = ± ( n + 1 2 )
d = d / m 2 ,
U ( x ) = ( a + b cos 2 π N x ) exp [ j k x 2 / 2 R ] .
U ( x 1 ) = R R + d exp [ j k x 1 2 / 2 ( R + d ) ] × [ a + b cos R R + d · 2 π N x 1 · exp { - j R R + d · π N 2 λ d } ] .
cos π N 2 R d R + d λ .