Abstract

We describe and demonstrate a novel method to measure directly excitation-energy migration distances in fluorescing materials. In any desired direction, migration distances corresponding to 1/10 to 3 times the fluorescence wavelength can be determined with an accuracy of ~ 10%. Fluorescing materials in the form of typically 10-µm-thick samples are coated with a mirror on one surface. A coherent excitation beam is used to create a standing-wave pattern in the sample. The fluorescence radiation is shown to possess an interference peak in one particular direction. In the case of energy diffusion, this peak becomes indistinct. From the amplitude of the peak, the energy-diffusion distance is directly obtained. The existence of the peak, its position and amplitude are experimentally verified by use of a fluorescing film of rhodamine 6G doped polyurethane.

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Th. Förster, Ann. Physik 2, 55 (1948); D. L. Dexter, J. Chem. Phys. 21, 836 (1953). For a recent review, see W. J. G. Grant, Phys. Rev. B 4, 648 (1971) and the references cited therein.
  2. See, for example, L. G. Van Uitert and S. Ida, J. Chem. Phys. 37, 986 (1962); G. E. Peterson and P. M. Bridenbaugh, J. Opt. Soc. Am. 54, 644 (1964); J. P. Van der Ziel, L. Kopf, and L. G. Van Uitert, Phys. Rev. B 6, 615 (1972).
  3. See, for example, L. G. Van Uitert, in Luminescence of Inorganic Solids, edited by P. Goldberg (Academic, New York, 1966), p. 465; M. J. Weber, J. Appl. Phys. 44, 4058 (1973).
  4. C. L. Tang, H. Statz, and G. A. de Mars, J. Appl. Phys. 35, 2289 (1963).
  5. H. G. Danielmeyer, J. Appl. Phys. 42, 3125 (1971).
  6. M. Yokota and O. Tamimoto, J. Phys. Soc. Jpn. 22, 779 (1967); M. Inokuti and F. Hirayama, J. Chem. Phys. 43, 1978 (1965); M. J. Weber, Phys. Rev. B 4, 2932 (1971).
  7. M. Blätte, H. G. Danielmeyer, and R. Ulrich, Appl. Phys. 1, 275 (1973); H. P. Weber, B. C. Tofield, and T. C. Damen, in Optical Society Topical Meeting on Integrated Optics, Paper MB8, New Orleans, 21–24 January 1974.
  8. For purpose for this paper, we shall refer to the mirror as a reflecting metal; however, a dielectric mirror or total-internal reflection may serve the same purpose.
  9. See, for example, W. Macke, Thermodyamik und Statistik, (Akademische Verlagsgesellschaft, Leipzig, 1962), p. 22.
  10. The presence of a reflecting surface also affects the lifetime of fluorescing centers that are closer to the surface than ~λƒ. See, e.g., K. H. Drexhage, J. Lumin. 1,2, 693 (1970). For samples of thickness b»λƒ this effect influences our results insignificantly.
  11. R. Ulrich and H. P. Weber, Appl. Opt. 11, 428 (1972).
  12. M. Born and E. Wolf, Principles of Optics, 3rd ed. (Pergamon, New York, 1965), pp. 628–630.
  13. W. J. Tomlinson and H. P. Weber, J. Opt. Soc. Am. 63, 685 (1973).

1973 (2)

M. Blätte, H. G. Danielmeyer, and R. Ulrich, Appl. Phys. 1, 275 (1973); H. P. Weber, B. C. Tofield, and T. C. Damen, in Optical Society Topical Meeting on Integrated Optics, Paper MB8, New Orleans, 21–24 January 1974.

W. J. Tomlinson and H. P. Weber, J. Opt. Soc. Am. 63, 685 (1973).

1972 (1)

R. Ulrich and H. P. Weber, Appl. Opt. 11, 428 (1972).

1971 (1)

H. G. Danielmeyer, J. Appl. Phys. 42, 3125 (1971).

1970 (1)

The presence of a reflecting surface also affects the lifetime of fluorescing centers that are closer to the surface than ~λƒ. See, e.g., K. H. Drexhage, J. Lumin. 1,2, 693 (1970). For samples of thickness b»λƒ this effect influences our results insignificantly.

1967 (1)

M. Yokota and O. Tamimoto, J. Phys. Soc. Jpn. 22, 779 (1967); M. Inokuti and F. Hirayama, J. Chem. Phys. 43, 1978 (1965); M. J. Weber, Phys. Rev. B 4, 2932 (1971).

1963 (1)

C. L. Tang, H. Statz, and G. A. de Mars, J. Appl. Phys. 35, 2289 (1963).

1962 (1)

See, for example, L. G. Van Uitert and S. Ida, J. Chem. Phys. 37, 986 (1962); G. E. Peterson and P. M. Bridenbaugh, J. Opt. Soc. Am. 54, 644 (1964); J. P. Van der Ziel, L. Kopf, and L. G. Van Uitert, Phys. Rev. B 6, 615 (1972).

1948 (1)

Th. Förster, Ann. Physik 2, 55 (1948); D. L. Dexter, J. Chem. Phys. 21, 836 (1953). For a recent review, see W. J. G. Grant, Phys. Rev. B 4, 648 (1971) and the references cited therein.

Blätte, M.

M. Blätte, H. G. Danielmeyer, and R. Ulrich, Appl. Phys. 1, 275 (1973); H. P. Weber, B. C. Tofield, and T. C. Damen, in Optical Society Topical Meeting on Integrated Optics, Paper MB8, New Orleans, 21–24 January 1974.

Born, M.

M. Born and E. Wolf, Principles of Optics, 3rd ed. (Pergamon, New York, 1965), pp. 628–630.

Danielmeyer, H. G.

M. Blätte, H. G. Danielmeyer, and R. Ulrich, Appl. Phys. 1, 275 (1973); H. P. Weber, B. C. Tofield, and T. C. Damen, in Optical Society Topical Meeting on Integrated Optics, Paper MB8, New Orleans, 21–24 January 1974.

H. G. Danielmeyer, J. Appl. Phys. 42, 3125 (1971).

de Mars, G. A.

C. L. Tang, H. Statz, and G. A. de Mars, J. Appl. Phys. 35, 2289 (1963).

Drexhage, K. H.

The presence of a reflecting surface also affects the lifetime of fluorescing centers that are closer to the surface than ~λƒ. See, e.g., K. H. Drexhage, J. Lumin. 1,2, 693 (1970). For samples of thickness b»λƒ this effect influences our results insignificantly.

Förster, Th.

Th. Förster, Ann. Physik 2, 55 (1948); D. L. Dexter, J. Chem. Phys. 21, 836 (1953). For a recent review, see W. J. G. Grant, Phys. Rev. B 4, 648 (1971) and the references cited therein.

Ida, S.

See, for example, L. G. Van Uitert and S. Ida, J. Chem. Phys. 37, 986 (1962); G. E. Peterson and P. M. Bridenbaugh, J. Opt. Soc. Am. 54, 644 (1964); J. P. Van der Ziel, L. Kopf, and L. G. Van Uitert, Phys. Rev. B 6, 615 (1972).

Macke, W.

See, for example, W. Macke, Thermodyamik und Statistik, (Akademische Verlagsgesellschaft, Leipzig, 1962), p. 22.

Statz, H.

C. L. Tang, H. Statz, and G. A. de Mars, J. Appl. Phys. 35, 2289 (1963).

Tamimoto, O.

M. Yokota and O. Tamimoto, J. Phys. Soc. Jpn. 22, 779 (1967); M. Inokuti and F. Hirayama, J. Chem. Phys. 43, 1978 (1965); M. J. Weber, Phys. Rev. B 4, 2932 (1971).

Tang, C. L.

C. L. Tang, H. Statz, and G. A. de Mars, J. Appl. Phys. 35, 2289 (1963).

Tomlinson, W. J.

W. J. Tomlinson and H. P. Weber, J. Opt. Soc. Am. 63, 685 (1973).

Ulrich, R.

M. Blätte, H. G. Danielmeyer, and R. Ulrich, Appl. Phys. 1, 275 (1973); H. P. Weber, B. C. Tofield, and T. C. Damen, in Optical Society Topical Meeting on Integrated Optics, Paper MB8, New Orleans, 21–24 January 1974.

R. Ulrich and H. P. Weber, Appl. Opt. 11, 428 (1972).

Van Uitert, L. G.

See, for example, L. G. Van Uitert and S. Ida, J. Chem. Phys. 37, 986 (1962); G. E. Peterson and P. M. Bridenbaugh, J. Opt. Soc. Am. 54, 644 (1964); J. P. Van der Ziel, L. Kopf, and L. G. Van Uitert, Phys. Rev. B 6, 615 (1972).

See, for example, L. G. Van Uitert, in Luminescence of Inorganic Solids, edited by P. Goldberg (Academic, New York, 1966), p. 465; M. J. Weber, J. Appl. Phys. 44, 4058 (1973).

Weber, H. P.

W. J. Tomlinson and H. P. Weber, J. Opt. Soc. Am. 63, 685 (1973).

R. Ulrich and H. P. Weber, Appl. Opt. 11, 428 (1972).

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 3rd ed. (Pergamon, New York, 1965), pp. 628–630.

Yokota, M.

M. Yokota and O. Tamimoto, J. Phys. Soc. Jpn. 22, 779 (1967); M. Inokuti and F. Hirayama, J. Chem. Phys. 43, 1978 (1965); M. J. Weber, Phys. Rev. B 4, 2932 (1971).

Other (13)

Th. Förster, Ann. Physik 2, 55 (1948); D. L. Dexter, J. Chem. Phys. 21, 836 (1953). For a recent review, see W. J. G. Grant, Phys. Rev. B 4, 648 (1971) and the references cited therein.

See, for example, L. G. Van Uitert and S. Ida, J. Chem. Phys. 37, 986 (1962); G. E. Peterson and P. M. Bridenbaugh, J. Opt. Soc. Am. 54, 644 (1964); J. P. Van der Ziel, L. Kopf, and L. G. Van Uitert, Phys. Rev. B 6, 615 (1972).

See, for example, L. G. Van Uitert, in Luminescence of Inorganic Solids, edited by P. Goldberg (Academic, New York, 1966), p. 465; M. J. Weber, J. Appl. Phys. 44, 4058 (1973).

C. L. Tang, H. Statz, and G. A. de Mars, J. Appl. Phys. 35, 2289 (1963).

H. G. Danielmeyer, J. Appl. Phys. 42, 3125 (1971).

M. Yokota and O. Tamimoto, J. Phys. Soc. Jpn. 22, 779 (1967); M. Inokuti and F. Hirayama, J. Chem. Phys. 43, 1978 (1965); M. J. Weber, Phys. Rev. B 4, 2932 (1971).

M. Blätte, H. G. Danielmeyer, and R. Ulrich, Appl. Phys. 1, 275 (1973); H. P. Weber, B. C. Tofield, and T. C. Damen, in Optical Society Topical Meeting on Integrated Optics, Paper MB8, New Orleans, 21–24 January 1974.

For purpose for this paper, we shall refer to the mirror as a reflecting metal; however, a dielectric mirror or total-internal reflection may serve the same purpose.

See, for example, W. Macke, Thermodyamik und Statistik, (Akademische Verlagsgesellschaft, Leipzig, 1962), p. 22.

The presence of a reflecting surface also affects the lifetime of fluorescing centers that are closer to the surface than ~λƒ. See, e.g., K. H. Drexhage, J. Lumin. 1,2, 693 (1970). For samples of thickness b»λƒ this effect influences our results insignificantly.

R. Ulrich and H. P. Weber, Appl. Opt. 11, 428 (1972).

M. Born and E. Wolf, Principles of Optics, 3rd ed. (Pergamon, New York, 1965), pp. 628–630.

W. J. Tomlinson and H. P. Weber, J. Opt. Soc. Am. 63, 685 (1973).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.