Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. B. Ulrich, J. Opt. Soc. Am. 62, 1383A (1972).
    [Crossref]
  2. J. N. Hayes, Appl. Opt. 11, 455 (1972).
    [Crossref] [PubMed]
  3. P. B. Ulrich, J. N. Hayes, and A. H. Aitken, J. Opt. Soc. Am. 62, 728A (1972); A. H. Aitken, J. N. Hayes, and P. B. Ulrich, Appl. Opt. 12, 193 (1973).
    [Crossref] [PubMed]
  4. P. B. Ulrich, J. N. Hayes, and A. H. Aitken, J. Opt. Soc. Am. 62, 298L (1972).
    [Crossref]

1972 (4)

P. B. Ulrich, J. Opt. Soc. Am. 62, 1383A (1972).
[Crossref]

J. N. Hayes, Appl. Opt. 11, 455 (1972).
[Crossref] [PubMed]

P. B. Ulrich, J. N. Hayes, and A. H. Aitken, J. Opt. Soc. Am. 62, 728A (1972); A. H. Aitken, J. N. Hayes, and P. B. Ulrich, Appl. Opt. 12, 193 (1973).
[Crossref] [PubMed]

P. B. Ulrich, J. N. Hayes, and A. H. Aitken, J. Opt. Soc. Am. 62, 298L (1972).
[Crossref]

Aitken, A. H.

P. B. Ulrich, J. N. Hayes, and A. H. Aitken, J. Opt. Soc. Am. 62, 728A (1972); A. H. Aitken, J. N. Hayes, and P. B. Ulrich, Appl. Opt. 12, 193 (1973).
[Crossref] [PubMed]

P. B. Ulrich, J. N. Hayes, and A. H. Aitken, J. Opt. Soc. Am. 62, 298L (1972).
[Crossref]

Hayes, J. N.

P. B. Ulrich, J. N. Hayes, and A. H. Aitken, J. Opt. Soc. Am. 62, 298L (1972).
[Crossref]

J. N. Hayes, Appl. Opt. 11, 455 (1972).
[Crossref] [PubMed]

P. B. Ulrich, J. N. Hayes, and A. H. Aitken, J. Opt. Soc. Am. 62, 728A (1972); A. H. Aitken, J. N. Hayes, and P. B. Ulrich, Appl. Opt. 12, 193 (1973).
[Crossref] [PubMed]

Ulrich, P. B.

P. B. Ulrich, J. Opt. Soc. Am. 62, 1383A (1972).
[Crossref]

P. B. Ulrich, J. N. Hayes, and A. H. Aitken, J. Opt. Soc. Am. 62, 728A (1972); A. H. Aitken, J. N. Hayes, and P. B. Ulrich, Appl. Opt. 12, 193 (1973).
[Crossref] [PubMed]

P. B. Ulrich, J. N. Hayes, and A. H. Aitken, J. Opt. Soc. Am. 62, 298L (1972).
[Crossref]

Appl. Opt. (1)

J. Opt. Soc. Am. (3)

P. B. Ulrich, J. N. Hayes, and A. H. Aitken, J. Opt. Soc. Am. 62, 728A (1972); A. H. Aitken, J. N. Hayes, and P. B. Ulrich, Appl. Opt. 12, 193 (1973).
[Crossref] [PubMed]

P. B. Ulrich, J. N. Hayes, and A. H. Aitken, J. Opt. Soc. Am. 62, 298L (1972).
[Crossref]

P. B. Ulrich, J. Opt. Soc. Am. 62, 1383A (1972).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Plots of focal-plane irradiance vs radius for selected times (top) and time-averaged over a pulse length (bottom) for a typical case of interest. t = 0, —; t = 1.5, – – –; t = 2.5, ····; t = 3.5; ··–; t = 4.5, - - - - . The time units are arbitrary.

Fig. 2
Fig. 2

Log-log plot of Es in normalized units vs ts in units of τH (see text for definitions) for a series of computer runs for two different laser wavelengths (circles are 10.6 μm; triangles are 3.75 μm). Shown also are the predictions of perturbation theory, straight lines, in the limit of pulses short and long compared with τH.

Fig. 3
Fig. 3

Plot of saturation time vs absorption coefficient for a fixed mirror size of 3 mm and a fixed power of 200 kW. The solid curve is the short-pulse analytic-theory result and the dashed curve connects points generated by the thermal-blooming computer program.

Fig. 4
Fig. 4

Plot of saturation time vs mirror diameter for fixed power of 200 kW and two values of absorption constant. Solid curves: analytic results; dashed curves: computer results. Circles are for α = 0.002 cm−1 and triangles are for α = 0.004 cm−1.