Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Röhler, Vision Res. 2, 391 (1962).
    [Crossref]
  2. R. Röhler, U. Miller, and M. Aberl, Vision Res. 9, 407 (1969).
    [Crossref]
  3. F. Flamant, Rev. Opt. Theor. Instrum. 34, 433 (1955).
  4. G. Westheimer and F. Campbell, J. Opt. Soc. Am. 52, 1040 (1962).
    [Crossref] [PubMed]
  5. J. Krauskopf, J. Opt. Soc. Am. 52, 1046 (1962).
    [Crossref]
  6. F. W. Campbell and R. W. Gubisch, J. Physiol. (Lond.) 186, 558 (1966).
  7. Y. Le Grand, Rev. Opt. Theor. Instrum. 16, 201 (1937).
  8. P. Lacomme, Opt. Acta 7, 331 (1960).
    [Crossref]
  9. K. Rosenhauer and K. Rosenbruck, Appl. Opt. 7, 283 (1968).
    [Crossref] [PubMed]
  10. J. Simon, Opt. Acta 17, 221 (1970).
    [Crossref]
  11. F. Berny, Vision Res. 12, 1631 (1972).
    [Crossref] [PubMed]

1972 (1)

F. Berny, Vision Res. 12, 1631 (1972).
[Crossref] [PubMed]

1970 (1)

J. Simon, Opt. Acta 17, 221 (1970).
[Crossref]

1969 (1)

R. Röhler, U. Miller, and M. Aberl, Vision Res. 9, 407 (1969).
[Crossref]

1968 (1)

1966 (1)

F. W. Campbell and R. W. Gubisch, J. Physiol. (Lond.) 186, 558 (1966).

1962 (3)

1960 (1)

P. Lacomme, Opt. Acta 7, 331 (1960).
[Crossref]

1955 (1)

F. Flamant, Rev. Opt. Theor. Instrum. 34, 433 (1955).

1937 (1)

Y. Le Grand, Rev. Opt. Theor. Instrum. 16, 201 (1937).

Aberl, M.

R. Röhler, U. Miller, and M. Aberl, Vision Res. 9, 407 (1969).
[Crossref]

Berny, F.

F. Berny, Vision Res. 12, 1631 (1972).
[Crossref] [PubMed]

Campbell, F.

Campbell, F. W.

F. W. Campbell and R. W. Gubisch, J. Physiol. (Lond.) 186, 558 (1966).

Flamant, F.

F. Flamant, Rev. Opt. Theor. Instrum. 34, 433 (1955).

Gubisch, R. W.

F. W. Campbell and R. W. Gubisch, J. Physiol. (Lond.) 186, 558 (1966).

Krauskopf, J.

Lacomme, P.

P. Lacomme, Opt. Acta 7, 331 (1960).
[Crossref]

Le Grand, Y.

Y. Le Grand, Rev. Opt. Theor. Instrum. 16, 201 (1937).

Miller, U.

R. Röhler, U. Miller, and M. Aberl, Vision Res. 9, 407 (1969).
[Crossref]

Röhler, R.

R. Röhler, U. Miller, and M. Aberl, Vision Res. 9, 407 (1969).
[Crossref]

R. Röhler, Vision Res. 2, 391 (1962).
[Crossref]

Rosenbruck, K.

Rosenhauer, K.

Simon, J.

J. Simon, Opt. Acta 17, 221 (1970).
[Crossref]

Westheimer, G.

Appl. Opt. (1)

J. Opt. Soc. Am. (2)

J. Physiol. (Lond.) (1)

F. W. Campbell and R. W. Gubisch, J. Physiol. (Lond.) 186, 558 (1966).

Opt. Acta (2)

P. Lacomme, Opt. Acta 7, 331 (1960).
[Crossref]

J. Simon, Opt. Acta 17, 221 (1970).
[Crossref]

Rev. Opt. Theor. Instrum. (2)

F. Flamant, Rev. Opt. Theor. Instrum. 34, 433 (1955).

Y. Le Grand, Rev. Opt. Theor. Instrum. 16, 201 (1937).

Vision Res. (3)

R. Röhler, Vision Res. 2, 391 (1962).
[Crossref]

R. Röhler, U. Miller, and M. Aberl, Vision Res. 9, 407 (1969).
[Crossref]

F. Berny, Vision Res. 12, 1631 (1972).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Distribution of illuminance E(x) in the image S of a narrow slit S given by the lens system L.

Fig. 2
Fig. 2

A schematic diagram of the experimental apparatus. W: tungsten filament source 1.6 × 1.6 mm; luminance ≃107 cd/m2; S: slit 1.2 × 120 min of arc; L1 and L2: achromatic lenses (f = 80 mm); BS: beam splitter; LT: light trap; P: artificial pupil (3 mm diam) associated with the studied eye; Di: stop limiting the analysis field; G: radial grating; PMT: photomultiplier tube EMI type No. 9558 QB; CRT: cathode-ray tube.

Fig. 3
Fig. 3

M(2.3 cycle/deg, 2θ): modulation transfer factor of one eye by double traverse for one spatial frequency (continuous line); and F(2θ): relative luminous flux in the image S of a slit S by double traverse of the same eye (dotted line) as a function of the angular dimensions of the analysis field 2θ. Corrected values shown by circles.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

O ( ω ) = E ( x ) exp 2 i π ω x d x / E ( x ) d x ,
M ( ω ) = | O ( ω ) | = 2 [ 0 a E ( x ) cos 2 π ω x d x + a E ( x ) cos 2 π ω x d x ] / 2 [ 0 a E ( x ) d x + a E ( x ) d x ] .
F ( ) = E ( x ) d x , F ( 2 a ) = a a E ( x ) d x ,
M ( ω ) M ( ω , 2 a ) × F ( 2 a ) F ( ) .
E ( x ) = D ( x ) * R ( x ) * D ( x ) ,
F ( 2 θ i ) = θ i θ i E ( θ ) d θ .
M ( 2.3 cycles / deg , 106 max ) = M ( 2.3 cycles / deg , 2 θ i ) F ( 2 θ i ) F ( 106 ) .