Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Suzuki, J. Opt. Soc. Am. 61, 1029 (1971).
    [Crossref]
  2. É. Lalor, Opt. Commun. 1, 50 (1969).
    [Crossref]
  3. J. A. Stratton, Electromagnetic Theory (McGraw–Hill, New York and London, 1941), p. 392.
  4. For example, A. S. Pine, Phys. Rev. 139, A901 (1965); R. K. Bullough, J. Phys. A 1, 409 (1968).
    [Crossref]
  5. Reference 2, p. 52, Eq. (2.18).
  6. Eq. (17) is already derived by Lalor, Ref. 2, p. 52, Eq. (2.19).
  7. M. Born and E. Wolf, Principles of Optics, 3rd ed. (Pergamon, Oxford and New York, 1965), Sec. 2.4.
  8. É. Lalor and E. Wolf, J. Opt. Soc. Am. 62, 1165 (1972).
    [Crossref]

1972 (1)

1971 (1)

1969 (1)

É. Lalor, Opt. Commun. 1, 50 (1969).
[Crossref]

1965 (1)

For example, A. S. Pine, Phys. Rev. 139, A901 (1965); R. K. Bullough, J. Phys. A 1, 409 (1968).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics, 3rd ed. (Pergamon, Oxford and New York, 1965), Sec. 2.4.

Lalor, É.

Pine, A. S.

For example, A. S. Pine, Phys. Rev. 139, A901 (1965); R. K. Bullough, J. Phys. A 1, 409 (1968).
[Crossref]

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw–Hill, New York and London, 1941), p. 392.

Suzuki, T.

Wolf, E.

É. Lalor and E. Wolf, J. Opt. Soc. Am. 62, 1165 (1972).
[Crossref]

M. Born and E. Wolf, Principles of Optics, 3rd ed. (Pergamon, Oxford and New York, 1965), Sec. 2.4.

J. Opt. Soc. Am. (2)

Opt. Commun. (1)

É. Lalor, Opt. Commun. 1, 50 (1969).
[Crossref]

Phys. Rev. (1)

For example, A. S. Pine, Phys. Rev. 139, A901 (1965); R. K. Bullough, J. Phys. A 1, 409 (1968).
[Crossref]

Other (4)

Reference 2, p. 52, Eq. (2.18).

Eq. (17) is already derived by Lalor, Ref. 2, p. 52, Eq. (2.19).

M. Born and E. Wolf, Principles of Optics, 3rd ed. (Pergamon, Oxford and New York, 1965), Sec. 2.4.

J. A. Stratton, Electromagnetic Theory (McGraw–Hill, New York and London, 1941), p. 392.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (18)

Equations on this page are rendered with MathJax. Learn more.

· A = 0
2 A + n 2 k 0 2 A + 2 ( A · log n ) = 0 ,
4 π α k 0 2 N A G = ( A r 2 G G r 2 A ) 2 G r ( A · r log n ) ,
A = 4 π α ϕ A ( ϕ N / ( n 2 1 ) ) .
[ 1 4 π α ϕ 4 π 3 α N ] A ( r ) = A ( i ) ( r ) + 1 4 π { A ( r ) G ν G A ( r ) ν } d S + α ( r G ) [ N ( r ) A ( r ) · ν ] d S + 1 4 π V G r { r · A ( r ) } d V α V ( r G ) r · [ N ( r ) A ( r ) ] d V
A ( r ) = A ( i ) ( r ) + 1 4 π { A ( r ) G ν G A ( r ) ν } d S + α ( r G ) [ N ( r ) A ( r ) · ν ] d S + 1 4 π V G r { r · A ( r ) } d V α V ( r G ) r · [ N ( r ) A ( r ) ] d V ,
2 G + k 0 2 G = 4 π δ ( R )
2 G + k 0 2 G = 0 ,
V r 2 [ G r { r · A ( r ) } ] d V = k 0 2 V G r [ r · A ( r ) ] d V 4 π r [ r · A ( r ) ]
V r 2 [ ( r G ) r · { N ( r ) A ( r ) } ] d V = k 0 2 V ( r G ) r · [ N ( r ) A ( r ) ] d V + 4 π r [ r · N ( r ) A ( r ) ] ,
V r 2 { ( 1 / 4 π ) G r ( r · A ) ( r G ) r · ( α N A ) } d V = k 0 2 V { ( 1 / 4 π ) G r ( r · A ) ( r G ) r · ( α N A ) } d V r { r · ( A ) } .
4 π 3 α N ( r ) = n ( r ) 2 1 n ( r ) 2 + 2 ,
0 = A ( i ) ( r ) + 1 4 π { A ( r ) G ν G A ( r ) ν } d S + α ( r G ) [ N ( r ) A ( r ) · ν ] d S + 1 4 π V G r { r · A ( r ) } d V α V ( r G ) r · [ N ( r ) A ( r ) ] d V .
· A = 0
0 = A ( i ) ( r ) + 1 4 π { A ( r ) G ν G A ( r ) ν } d S + n 2 1 4 π ( r G ) [ A ( r ) · ν ] d S .
A ( r ) = A ( i ) ( r ) + 1 4 π { A ( r ) G ν G A ( r ) ν } d S + n 2 1 4 π ( r G ) [ A ( r ) · ν ] d S .
0 = A ( i ) ( r ) + 1 4 π { A ( i ) ( r ) G ν G A ( i ) ( r ) ν } d S
0 = 1 4 π { A ( i ) ( r ) G ν G A ( i ) ( r ) ν } d S ,