Abstract

The vapor pressure of rubidium was determined in the neighborhood of 330 K from measurements of optical absorption of the resonance lines. A narrow-line source was used and a full analysis of the line profiles was done. Measurements of resonance-broadening depolarization give another check on the Rb vapor pressure in the 430-K range, assuming that theoretical cross section is correct. The results are very close to the analytic compromise previously suggested by Nesemeyanov.

© 1973 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Hull and L. Bradley, J. Opt. Soc. Am. 57, 11 (1967).
    [Crossref]
  2. H. Kostkowski and A. Bass, J. Opt. Soc. Am. 46, 1060 (1956).
    [Crossref]
  3. H. Gibbs and R. Hull, Phys. Rev. 153, 132 (1967).
    [Crossref]
  4. M. H. Ornstein and R. N. Zare, Phys. Rev. 181, 214 (1969).
    [Crossref]
  5. N. Ioli, F. Strumia, and A. Moretti, J. Opt. Soc. Am. 61, 1251 (1971).
    [Crossref]
  6. M. Rozwadowski and E. Lipworth, J. Chem. Phys. 43, 2347 (1965).
    [Crossref]
  7. S. M. Jarrett and P. A. Franken, J. Opt. Soc. Am. 55, 1603 (1965).
    [Crossref]
  8. S. M. Jarrett, Phys. Rev. 133, 111 (1964).
    [Crossref]
  9. See Figs. 19–21 of Ref. 3 for a comparison of the observed and calculated spectrums.
  10. Figures 19 and 20 of Ref. 3, Fig. 2 of Ref. 7, Figs. 2 and 3 of Ref. 6, Figs. 2 and 3 of Ref. 7. The large component-intensity anomaly is the indicator of serious self-reversal in the last two cases.
  11. J. M. Vaughan, Phys. Rev. 166, 13 (1968).
    [Crossref]
  12. W. E. Bell, A. L. Bloom, and J. Lynch, Rev. Sci. Instrum. 32, 688 (1961).
    [Crossref]
  13. B. Bederson and V. Jaccarino, Phys. Rev. 87, 228 (1952).
  14. B. Senitzky and I. I. Rabi, Phys. Rev. 103, 315 (1956).
    [Crossref]
  15. E. L. Lewis and D. N. Stacey, in Proceedings of the International Conference on Optical Pumping and Atomic Line Shape (Panstwowe Wydawnictwo Naukowe, Warsaw, 1968), p. 123.
  16. E. L. Lewis, M. M. Rebbeck, and J. M. Vaughan, J. Phys. B 4, 741 (1971).
    [Crossref]
  17. A. G. Mitchell and M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge U. P., Cambridge, 1961). See pp. 99–101.
  18. R. W. Schmieder, A. Lurio, W. Happer, and A. Khadjavi, Phys. Rev. A 2, 1316 (1970); S. Svanberg and S. Rydberg, Z. Phys. 227, 216 (1969); A. Gallagher, Phys. Rev. 157, 68 (1967); J. K. Link, J. Opt. Soc. Am. 56, 1195 (1966).
    [Crossref]
  19. T. J. Killian, Phys. Rev. 27, 458 (1926).
    [Crossref]
  20. D. H. Scott, Philos. Mag. 47, 32 (1924).
  21. R. W. Ditchburn and J. C. Gilmour, Rev. Mod. Phys. 13, 310 (1941).
    [Crossref]
  22. A. N. Nesemeyanov, Vapor Pressures of the Chemical Elements (Elsevier, New York, 1963).

1971 (2)

E. L. Lewis, M. M. Rebbeck, and J. M. Vaughan, J. Phys. B 4, 741 (1971).
[Crossref]

N. Ioli, F. Strumia, and A. Moretti, J. Opt. Soc. Am. 61, 1251 (1971).
[Crossref]

1970 (1)

R. W. Schmieder, A. Lurio, W. Happer, and A. Khadjavi, Phys. Rev. A 2, 1316 (1970); S. Svanberg and S. Rydberg, Z. Phys. 227, 216 (1969); A. Gallagher, Phys. Rev. 157, 68 (1967); J. K. Link, J. Opt. Soc. Am. 56, 1195 (1966).
[Crossref]

1969 (1)

M. H. Ornstein and R. N. Zare, Phys. Rev. 181, 214 (1969).
[Crossref]

1968 (1)

J. M. Vaughan, Phys. Rev. 166, 13 (1968).
[Crossref]

1967 (2)

H. Gibbs and R. Hull, Phys. Rev. 153, 132 (1967).
[Crossref]

R. Hull and L. Bradley, J. Opt. Soc. Am. 57, 11 (1967).
[Crossref]

1965 (2)

S. M. Jarrett and P. A. Franken, J. Opt. Soc. Am. 55, 1603 (1965).
[Crossref]

M. Rozwadowski and E. Lipworth, J. Chem. Phys. 43, 2347 (1965).
[Crossref]

1964 (1)

S. M. Jarrett, Phys. Rev. 133, 111 (1964).
[Crossref]

1961 (1)

W. E. Bell, A. L. Bloom, and J. Lynch, Rev. Sci. Instrum. 32, 688 (1961).
[Crossref]

1956 (2)

B. Senitzky and I. I. Rabi, Phys. Rev. 103, 315 (1956).
[Crossref]

H. Kostkowski and A. Bass, J. Opt. Soc. Am. 46, 1060 (1956).
[Crossref]

1952 (1)

B. Bederson and V. Jaccarino, Phys. Rev. 87, 228 (1952).

1941 (1)

R. W. Ditchburn and J. C. Gilmour, Rev. Mod. Phys. 13, 310 (1941).
[Crossref]

1926 (1)

T. J. Killian, Phys. Rev. 27, 458 (1926).
[Crossref]

1924 (1)

D. H. Scott, Philos. Mag. 47, 32 (1924).

Bass, A.

Bederson, B.

B. Bederson and V. Jaccarino, Phys. Rev. 87, 228 (1952).

Bell, W. E.

W. E. Bell, A. L. Bloom, and J. Lynch, Rev. Sci. Instrum. 32, 688 (1961).
[Crossref]

Bloom, A. L.

W. E. Bell, A. L. Bloom, and J. Lynch, Rev. Sci. Instrum. 32, 688 (1961).
[Crossref]

Bradley, L.

Ditchburn, R. W.

R. W. Ditchburn and J. C. Gilmour, Rev. Mod. Phys. 13, 310 (1941).
[Crossref]

Franken, P. A.

Gibbs, H.

H. Gibbs and R. Hull, Phys. Rev. 153, 132 (1967).
[Crossref]

Gilmour, J. C.

R. W. Ditchburn and J. C. Gilmour, Rev. Mod. Phys. 13, 310 (1941).
[Crossref]

Happer, W.

R. W. Schmieder, A. Lurio, W. Happer, and A. Khadjavi, Phys. Rev. A 2, 1316 (1970); S. Svanberg and S. Rydberg, Z. Phys. 227, 216 (1969); A. Gallagher, Phys. Rev. 157, 68 (1967); J. K. Link, J. Opt. Soc. Am. 56, 1195 (1966).
[Crossref]

Hull, R.

H. Gibbs and R. Hull, Phys. Rev. 153, 132 (1967).
[Crossref]

R. Hull and L. Bradley, J. Opt. Soc. Am. 57, 11 (1967).
[Crossref]

Ioli, N.

Jaccarino, V.

B. Bederson and V. Jaccarino, Phys. Rev. 87, 228 (1952).

Jarrett, S. M.

Khadjavi, A.

R. W. Schmieder, A. Lurio, W. Happer, and A. Khadjavi, Phys. Rev. A 2, 1316 (1970); S. Svanberg and S. Rydberg, Z. Phys. 227, 216 (1969); A. Gallagher, Phys. Rev. 157, 68 (1967); J. K. Link, J. Opt. Soc. Am. 56, 1195 (1966).
[Crossref]

Killian, T. J.

T. J. Killian, Phys. Rev. 27, 458 (1926).
[Crossref]

Kostkowski, H.

Lewis, E. L.

E. L. Lewis, M. M. Rebbeck, and J. M. Vaughan, J. Phys. B 4, 741 (1971).
[Crossref]

E. L. Lewis and D. N. Stacey, in Proceedings of the International Conference on Optical Pumping and Atomic Line Shape (Panstwowe Wydawnictwo Naukowe, Warsaw, 1968), p. 123.

Lipworth, E.

M. Rozwadowski and E. Lipworth, J. Chem. Phys. 43, 2347 (1965).
[Crossref]

Lurio, A.

R. W. Schmieder, A. Lurio, W. Happer, and A. Khadjavi, Phys. Rev. A 2, 1316 (1970); S. Svanberg and S. Rydberg, Z. Phys. 227, 216 (1969); A. Gallagher, Phys. Rev. 157, 68 (1967); J. K. Link, J. Opt. Soc. Am. 56, 1195 (1966).
[Crossref]

Lynch, J.

W. E. Bell, A. L. Bloom, and J. Lynch, Rev. Sci. Instrum. 32, 688 (1961).
[Crossref]

Mitchell, A. G.

A. G. Mitchell and M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge U. P., Cambridge, 1961). See pp. 99–101.

Moretti, A.

Nesemeyanov, A. N.

A. N. Nesemeyanov, Vapor Pressures of the Chemical Elements (Elsevier, New York, 1963).

Ornstein, M. H.

M. H. Ornstein and R. N. Zare, Phys. Rev. 181, 214 (1969).
[Crossref]

Rabi, I. I.

B. Senitzky and I. I. Rabi, Phys. Rev. 103, 315 (1956).
[Crossref]

Rebbeck, M. M.

E. L. Lewis, M. M. Rebbeck, and J. M. Vaughan, J. Phys. B 4, 741 (1971).
[Crossref]

Rozwadowski, M.

M. Rozwadowski and E. Lipworth, J. Chem. Phys. 43, 2347 (1965).
[Crossref]

Schmieder, R. W.

R. W. Schmieder, A. Lurio, W. Happer, and A. Khadjavi, Phys. Rev. A 2, 1316 (1970); S. Svanberg and S. Rydberg, Z. Phys. 227, 216 (1969); A. Gallagher, Phys. Rev. 157, 68 (1967); J. K. Link, J. Opt. Soc. Am. 56, 1195 (1966).
[Crossref]

Scott, D. H.

D. H. Scott, Philos. Mag. 47, 32 (1924).

Senitzky, B.

B. Senitzky and I. I. Rabi, Phys. Rev. 103, 315 (1956).
[Crossref]

Stacey, D. N.

E. L. Lewis and D. N. Stacey, in Proceedings of the International Conference on Optical Pumping and Atomic Line Shape (Panstwowe Wydawnictwo Naukowe, Warsaw, 1968), p. 123.

Strumia, F.

Vaughan, J. M.

E. L. Lewis, M. M. Rebbeck, and J. M. Vaughan, J. Phys. B 4, 741 (1971).
[Crossref]

J. M. Vaughan, Phys. Rev. 166, 13 (1968).
[Crossref]

Zare, R. N.

M. H. Ornstein and R. N. Zare, Phys. Rev. 181, 214 (1969).
[Crossref]

Zemansky, M. W.

A. G. Mitchell and M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge U. P., Cambridge, 1961). See pp. 99–101.

J. Chem. Phys. (1)

M. Rozwadowski and E. Lipworth, J. Chem. Phys. 43, 2347 (1965).
[Crossref]

J. Opt. Soc. Am. (4)

J. Phys. B (1)

E. L. Lewis, M. M. Rebbeck, and J. M. Vaughan, J. Phys. B 4, 741 (1971).
[Crossref]

Philos. Mag. (1)

D. H. Scott, Philos. Mag. 47, 32 (1924).

Phys. Rev. (7)

T. J. Killian, Phys. Rev. 27, 458 (1926).
[Crossref]

J. M. Vaughan, Phys. Rev. 166, 13 (1968).
[Crossref]

B. Bederson and V. Jaccarino, Phys. Rev. 87, 228 (1952).

B. Senitzky and I. I. Rabi, Phys. Rev. 103, 315 (1956).
[Crossref]

H. Gibbs and R. Hull, Phys. Rev. 153, 132 (1967).
[Crossref]

M. H. Ornstein and R. N. Zare, Phys. Rev. 181, 214 (1969).
[Crossref]

S. M. Jarrett, Phys. Rev. 133, 111 (1964).
[Crossref]

Phys. Rev. A (1)

R. W. Schmieder, A. Lurio, W. Happer, and A. Khadjavi, Phys. Rev. A 2, 1316 (1970); S. Svanberg and S. Rydberg, Z. Phys. 227, 216 (1969); A. Gallagher, Phys. Rev. 157, 68 (1967); J. K. Link, J. Opt. Soc. Am. 56, 1195 (1966).
[Crossref]

Rev. Mod. Phys. (1)

R. W. Ditchburn and J. C. Gilmour, Rev. Mod. Phys. 13, 310 (1941).
[Crossref]

Rev. Sci. Instrum. (1)

W. E. Bell, A. L. Bloom, and J. Lynch, Rev. Sci. Instrum. 32, 688 (1961).
[Crossref]

Other (5)

E. L. Lewis and D. N. Stacey, in Proceedings of the International Conference on Optical Pumping and Atomic Line Shape (Panstwowe Wydawnictwo Naukowe, Warsaw, 1968), p. 123.

A. G. Mitchell and M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge U. P., Cambridge, 1961). See pp. 99–101.

See Figs. 19–21 of Ref. 3 for a comparison of the observed and calculated spectrums.

Figures 19 and 20 of Ref. 3, Fig. 2 of Ref. 7, Figs. 2 and 3 of Ref. 6, Figs. 2 and 3 of Ref. 7. The large component-intensity anomaly is the indicator of serious self-reversal in the last two cases.

A. N. Nesemeyanov, Vapor Pressures of the Chemical Elements (Elsevier, New York, 1963).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the apparatus, not to scale: A, pressure scanned Stalon; B, lens; C, monochromator; D, photo-multiplier; E, aperture; F, oven assembly; G, copper shield; H, heaters; I, asbestos; J, cell; K, mirrors (mirrors K are removable to allow optical paths through and around the cell); L, lamp.

Fig. 2
Fig. 2

Experimental lamp profile of Rb ( 5 2 P 3 2 5 2 S 1 2 ) 7800-Å line. The excited-state hyperfine structure is not resolved and positions are indicated from the data of Refs. 8 and 10. A, Doppler half-width, 0.028 cm−1; B, instrumental half-width, 0.012 cm−1.

Fig. 3
Fig. 3

Data for component a of Fig. 2. The upper curve is the lamp profile and the lower is through the cell at an oven temperature of 334.3 K. The arrows A indicate a half-width of 0.0338 cm−1. The background signals (B, background through cell; C, lamp background) are calculated; they result from transmission of the other components by the Fabry–Perot. The signals are recorded against time for the initiation of a pressure scan. The lower trace is slightly displaced, owing to a slight offset of the starting point of successive pressure scans.

Fig. 4
Fig. 4

Comparison of the measured profiles in Fig. 3 after background subtraction (solid lines) with theoretical profiles (dots and dashes). K is the line-center absorption coefficient, which we conclude is 0.96 ± 0.02. Note that the differences between the theoretical and measured lamp profile are reflected also in the absorption curve. Thus, the apparent absorption agrees closely with the calculated ratio for K = 0.96, in spite of minor differences between the actual and assumed lamp profile.

Fig. 5
Fig. 5

Vapor density of rubidium. □ Present work, absorption data; ■ Resonance depolarization (unpublished work by present authors); + Hackspill; ▲ Killian; ○ Gibbs and Hull; ⋄ Jarrett; × Scott; ——, Eq. (2) with A, B, C, and D from Ref. 2, Table I; – – – – Eq. (2) with A, B, C, and D from Ref. 21, Table I.

Tables (2)

Tables Icon

Table I Optical-absorption results.

Tables Icon

Table II Values of the constants in Eq. (2).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I A ( ν ) = f ( ν ) exp [ K T ( ν ) ] g ( ν ν ) d ν ,
I 0 ( ν ) = f ( ν ) g ( ν ν ) d ν ,
K A ( ν ) = ln [ I 0 ( ν ) / I A ( ν ) ] .
K = k 0 N L = 2 F + 1 2 ( 2 I + 1 ) 2 Δ ν D ( ln 2 π ) 1 2 π e 2 m c f N L .
log 10 ( p ) = A / T B log 10 T + C + D T ,
log 10 ( N ) = A / T ( B + 1 ) log 10 T + C + D T + 18.985 ,