Abstract

The power of the trapped modes on a semi-infinite optical fiber illuminated by an incoherent source is determined. All possible modes are excited, each with approximately the same power when V → ∞, V=2πρ{n12n22}1/2/λ, where ρ is the fiber radius, λ the wavelength of light in vacuum, and n1, n2 are the refractive indices of the fiber and its surround, respectively. A ray-optical interpretation is given for the summed power of the modes. For V = ∞, the power corresponds to that found from classical geometric optics, treating all rays as if they are meridional. This result is independent of the degree of coherence of the source. The per cent error of meridional ray optics is 100/V when V is large. The total power within the fiber is the combined power of the trapped modes and the radiation field. In the limit V = ∞, the total power within the fiber at any position z along its axis is that given by classical geometric optics, i.e., that found by tracing all rays, skew and meridional. At the point z = ∞ for arbitrary V, the total power is that due to the trapped modes only.

© 1973 Optical Society of America

Full Article  |  PDF Article
Related Articles
Multimode optical fibers: interplay of absorption and radiation losses

Colin Pask and Allan W. Snyder
Appl. Opt. 15(5) 1295-1298 (1976)

Multimode optical waveguides with graded refractive index: theory of power launching

P. Di Vita and R. Vannucci
Appl. Opt. 15(11) 2765-2772 (1976)

Light-acceptance property of an optical fiber

Allan W. Snyder, Colin Pask, and D. J. Mitchell
J. Opt. Soc. Am. 63(1) 59-64 (1973)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (59)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription