Abstract

The optical properties of very thin layers of lithium were investigated at normal temperature in static ultrahigh vacuum for the spectral region of 1–6 eV. It is shown that these layers exhibit two absorption bands: One, located in the ultraviolet region, is due to interband electron transitions; the other, located in the visible region, cannot be explained by means of classical theories. It is therefore called abnormal. An electron-microscopy study of the configuration of the deposits shows that this abnormal band is due to the granular structure of the deposits, whether they be discontinuous or continuous. In the latter case, they are made up of a two-dimensional distribution of grains on a continuous layer of metal. This structural model accounts for the abnormal optical properties shown, in particular by Mayer et al., on alkali metals, and shows that most of the polarimetric measurements made on these metals in all likelihood involve systematic errors.

© 1973 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Mayer and B. Hietel, in Proceedings of the International Colloquium on Optical Properties and Electronic Structure of Metals and Alloys, Paris 1965, edited by F. Abelès (North–Holland, Amsterdam, 1966), p. 47.
  2. N. Smith, Phys. Rev. 183, B634 (1969); Phys. Rev. B 2, 2840 (1970).
    [Crossref]
  3. P. Rouard, in Proceedings of the International Symposium on Basic Problems in Thin Films Physics, Clausthal Göttingen 1965, edited by R. Niedermayer and H. Mayer (Vandenboeck and Ruprecht, Göttingen, 1966), p. 263.
  4. G. Rasigni and P. Rouard, J. Opt. Soc. Am. 53, 604 (1963).
    [Crossref]
  5. R. Payan, Ann. Phys. (Paris) 4, 543 (1969).
  6. A. Meessen, J. Phys. (Paris) 33, 371 (1972).
    [Crossref]
  7. J. M. Hodgson, in Ref. 1, p. 60.
  8. A. G. Mathewson and H. P. Myers, Philos. Mag. 25, 853 (1972).
    [Crossref]
  9. J. P. Pétrakian and J. P. Palmari, Thin Solid Films 4, 423 (1969).
    [Crossref]
  10. M. Rasigni and G. Rasigni, J. Opt. Soc. Am. 62, 1033 (1972).
    [Crossref]
  11. We ascertained this by electron microscopy of replicas of the substrate that had received lithium deposits. No attack was noted.
  12. H. Wolter, Z. Phys. 113, 547 (1939).
    [Crossref]
  13. f was made under dynamic ultrahigh vacuum.
  14. The appearance of the replica made under ultrahigh vacuum suggests that the protective film of carbon was perhaps not sufficiently thick to prevent deterioriation of the layer by air.
  15. T. N. Rhodin, in Structure and Properties of Thin Films, edited by C. A. Neugabauer, J. B. Newkirk, and D. A. Verlilyea (Wiley, New York, London, 1959), p. 87.
  16. C. Kittel, in Introduction à la Physique du Solide (Dunod, Paris, 1958), p. 284.
  17. A. H. Wilson, in The Theory of Metals (Cambridge, New York, 1936), p. 133.
  18. P. N. Butcher, Proc. Phys. Soc. Lond. A 64, 765 (1951).
    [Crossref]
  19. A. O. E. Animalu, Phys. Rev. 163, 557 (1967).
    [Crossref]
  20. R. Kubo, J. Phys. Soc. Jap. 12, 570 (1957).
    [Crossref]
  21. D. A. Greenwood, Proc. Phys. Soc. Lond. A 71, 585 (1958).
    [Crossref]
  22. T. E. Faber, in Ref. 1, p. 259.
  23. N. F. Mott, Philos. Mag. 13, 985 (1966).
    [Crossref]
  24. F. S. Ham, Phys. Rev. 128, 82 (1962); Phys. Rev. 128, 1524 (1962).
    [Crossref]
  25. D. Beaglehole and O. Hunderi, Phys. Rev. B 2, 309 (1970); Phys. Rev. B 2, 321 (1970).
    [Crossref]
  26. S. Yamaguchi, J. Phys. Soc. Jap. 15, 1577 (1960); J. Phys. Soc. Jap. 17, 184 (1962).
    [Crossref]
  27. N. Emeric and A. Emeric, Thin Solid Films 1, 13 (1967).
    [Crossref]
  28. P. O. Nilsson, I. Lindau, and S. B. M. Hagstrom, Phys. Rev. B 1, 498 (1970).
    [Crossref]
  29. J. C. Payan and D. Roux, Opt. Commun. 4, 144 (1971).
    [Crossref]
  30. E. David, Z. Phys. 114, 389 (1939).
    [Crossref]
  31. G. Rasigni, Rev. Opt. Theor. Instrum. 41, 384 (1962); Rev. Opt. Theor. Instrum. 41, 566 (1962); Rev. Opt. Theor. Instrum. 41, 625 (1962).
  32. P. Bousquet, C. R. Acad. Sci. (Paris) 266, 505 (1968).
  33. R. H. Doremus, J. Colloid Interface Sci. 27, 412 (1968); J. Appl. Phys. 37, 2775 (1966).
    [Crossref]

1972 (3)

A. Meessen, J. Phys. (Paris) 33, 371 (1972).
[Crossref]

A. G. Mathewson and H. P. Myers, Philos. Mag. 25, 853 (1972).
[Crossref]

M. Rasigni and G. Rasigni, J. Opt. Soc. Am. 62, 1033 (1972).
[Crossref]

1971 (1)

J. C. Payan and D. Roux, Opt. Commun. 4, 144 (1971).
[Crossref]

1970 (2)

P. O. Nilsson, I. Lindau, and S. B. M. Hagstrom, Phys. Rev. B 1, 498 (1970).
[Crossref]

D. Beaglehole and O. Hunderi, Phys. Rev. B 2, 309 (1970); Phys. Rev. B 2, 321 (1970).
[Crossref]

1969 (3)

R. Payan, Ann. Phys. (Paris) 4, 543 (1969).

J. P. Pétrakian and J. P. Palmari, Thin Solid Films 4, 423 (1969).
[Crossref]

N. Smith, Phys. Rev. 183, B634 (1969); Phys. Rev. B 2, 2840 (1970).
[Crossref]

1968 (2)

P. Bousquet, C. R. Acad. Sci. (Paris) 266, 505 (1968).

R. H. Doremus, J. Colloid Interface Sci. 27, 412 (1968); J. Appl. Phys. 37, 2775 (1966).
[Crossref]

1967 (2)

N. Emeric and A. Emeric, Thin Solid Films 1, 13 (1967).
[Crossref]

A. O. E. Animalu, Phys. Rev. 163, 557 (1967).
[Crossref]

1966 (1)

N. F. Mott, Philos. Mag. 13, 985 (1966).
[Crossref]

1963 (1)

1962 (2)

F. S. Ham, Phys. Rev. 128, 82 (1962); Phys. Rev. 128, 1524 (1962).
[Crossref]

G. Rasigni, Rev. Opt. Theor. Instrum. 41, 384 (1962); Rev. Opt. Theor. Instrum. 41, 566 (1962); Rev. Opt. Theor. Instrum. 41, 625 (1962).

1960 (1)

S. Yamaguchi, J. Phys. Soc. Jap. 15, 1577 (1960); J. Phys. Soc. Jap. 17, 184 (1962).
[Crossref]

1958 (1)

D. A. Greenwood, Proc. Phys. Soc. Lond. A 71, 585 (1958).
[Crossref]

1957 (1)

R. Kubo, J. Phys. Soc. Jap. 12, 570 (1957).
[Crossref]

1951 (1)

P. N. Butcher, Proc. Phys. Soc. Lond. A 64, 765 (1951).
[Crossref]

1939 (2)

H. Wolter, Z. Phys. 113, 547 (1939).
[Crossref]

E. David, Z. Phys. 114, 389 (1939).
[Crossref]

Animalu, A. O. E.

A. O. E. Animalu, Phys. Rev. 163, 557 (1967).
[Crossref]

Beaglehole, D.

D. Beaglehole and O. Hunderi, Phys. Rev. B 2, 309 (1970); Phys. Rev. B 2, 321 (1970).
[Crossref]

Bousquet, P.

P. Bousquet, C. R. Acad. Sci. (Paris) 266, 505 (1968).

Butcher, P. N.

P. N. Butcher, Proc. Phys. Soc. Lond. A 64, 765 (1951).
[Crossref]

David, E.

E. David, Z. Phys. 114, 389 (1939).
[Crossref]

Doremus, R. H.

R. H. Doremus, J. Colloid Interface Sci. 27, 412 (1968); J. Appl. Phys. 37, 2775 (1966).
[Crossref]

Emeric, A.

N. Emeric and A. Emeric, Thin Solid Films 1, 13 (1967).
[Crossref]

Emeric, N.

N. Emeric and A. Emeric, Thin Solid Films 1, 13 (1967).
[Crossref]

Faber, T. E.

T. E. Faber, in Ref. 1, p. 259.

Greenwood, D. A.

D. A. Greenwood, Proc. Phys. Soc. Lond. A 71, 585 (1958).
[Crossref]

Hagstrom, S. B. M.

P. O. Nilsson, I. Lindau, and S. B. M. Hagstrom, Phys. Rev. B 1, 498 (1970).
[Crossref]

Ham, F. S.

F. S. Ham, Phys. Rev. 128, 82 (1962); Phys. Rev. 128, 1524 (1962).
[Crossref]

Hietel, B.

H. Mayer and B. Hietel, in Proceedings of the International Colloquium on Optical Properties and Electronic Structure of Metals and Alloys, Paris 1965, edited by F. Abelès (North–Holland, Amsterdam, 1966), p. 47.

Hodgson, J. M.

J. M. Hodgson, in Ref. 1, p. 60.

Hunderi, O.

D. Beaglehole and O. Hunderi, Phys. Rev. B 2, 309 (1970); Phys. Rev. B 2, 321 (1970).
[Crossref]

Kittel, C.

C. Kittel, in Introduction à la Physique du Solide (Dunod, Paris, 1958), p. 284.

Kubo, R.

R. Kubo, J. Phys. Soc. Jap. 12, 570 (1957).
[Crossref]

Lindau, I.

P. O. Nilsson, I. Lindau, and S. B. M. Hagstrom, Phys. Rev. B 1, 498 (1970).
[Crossref]

Mathewson, A. G.

A. G. Mathewson and H. P. Myers, Philos. Mag. 25, 853 (1972).
[Crossref]

Mayer, H.

H. Mayer and B. Hietel, in Proceedings of the International Colloquium on Optical Properties and Electronic Structure of Metals and Alloys, Paris 1965, edited by F. Abelès (North–Holland, Amsterdam, 1966), p. 47.

Meessen, A.

A. Meessen, J. Phys. (Paris) 33, 371 (1972).
[Crossref]

Mott, N. F.

N. F. Mott, Philos. Mag. 13, 985 (1966).
[Crossref]

Myers, H. P.

A. G. Mathewson and H. P. Myers, Philos. Mag. 25, 853 (1972).
[Crossref]

Nilsson, P. O.

P. O. Nilsson, I. Lindau, and S. B. M. Hagstrom, Phys. Rev. B 1, 498 (1970).
[Crossref]

Palmari, J. P.

J. P. Pétrakian and J. P. Palmari, Thin Solid Films 4, 423 (1969).
[Crossref]

Payan, J. C.

J. C. Payan and D. Roux, Opt. Commun. 4, 144 (1971).
[Crossref]

Payan, R.

R. Payan, Ann. Phys. (Paris) 4, 543 (1969).

Pétrakian, J. P.

J. P. Pétrakian and J. P. Palmari, Thin Solid Films 4, 423 (1969).
[Crossref]

Rasigni, G.

M. Rasigni and G. Rasigni, J. Opt. Soc. Am. 62, 1033 (1972).
[Crossref]

G. Rasigni and P. Rouard, J. Opt. Soc. Am. 53, 604 (1963).
[Crossref]

G. Rasigni, Rev. Opt. Theor. Instrum. 41, 384 (1962); Rev. Opt. Theor. Instrum. 41, 566 (1962); Rev. Opt. Theor. Instrum. 41, 625 (1962).

Rasigni, M.

Rhodin, T. N.

T. N. Rhodin, in Structure and Properties of Thin Films, edited by C. A. Neugabauer, J. B. Newkirk, and D. A. Verlilyea (Wiley, New York, London, 1959), p. 87.

Rouard, P.

G. Rasigni and P. Rouard, J. Opt. Soc. Am. 53, 604 (1963).
[Crossref]

P. Rouard, in Proceedings of the International Symposium on Basic Problems in Thin Films Physics, Clausthal Göttingen 1965, edited by R. Niedermayer and H. Mayer (Vandenboeck and Ruprecht, Göttingen, 1966), p. 263.

Roux, D.

J. C. Payan and D. Roux, Opt. Commun. 4, 144 (1971).
[Crossref]

Smith, N.

N. Smith, Phys. Rev. 183, B634 (1969); Phys. Rev. B 2, 2840 (1970).
[Crossref]

Wilson, A. H.

A. H. Wilson, in The Theory of Metals (Cambridge, New York, 1936), p. 133.

Wolter, H.

H. Wolter, Z. Phys. 113, 547 (1939).
[Crossref]

Yamaguchi, S.

S. Yamaguchi, J. Phys. Soc. Jap. 15, 1577 (1960); J. Phys. Soc. Jap. 17, 184 (1962).
[Crossref]

Ann. Phys. (Paris) (1)

R. Payan, Ann. Phys. (Paris) 4, 543 (1969).

C. R. Acad. Sci. (Paris) (1)

P. Bousquet, C. R. Acad. Sci. (Paris) 266, 505 (1968).

J. Colloid Interface Sci. (1)

R. H. Doremus, J. Colloid Interface Sci. 27, 412 (1968); J. Appl. Phys. 37, 2775 (1966).
[Crossref]

J. Opt. Soc. Am. (2)

J. Phys. (Paris) (1)

A. Meessen, J. Phys. (Paris) 33, 371 (1972).
[Crossref]

J. Phys. Soc. Jap. (2)

R. Kubo, J. Phys. Soc. Jap. 12, 570 (1957).
[Crossref]

S. Yamaguchi, J. Phys. Soc. Jap. 15, 1577 (1960); J. Phys. Soc. Jap. 17, 184 (1962).
[Crossref]

Opt. Commun. (1)

J. C. Payan and D. Roux, Opt. Commun. 4, 144 (1971).
[Crossref]

Philos. Mag. (2)

N. F. Mott, Philos. Mag. 13, 985 (1966).
[Crossref]

A. G. Mathewson and H. P. Myers, Philos. Mag. 25, 853 (1972).
[Crossref]

Phys. Rev. (3)

N. Smith, Phys. Rev. 183, B634 (1969); Phys. Rev. B 2, 2840 (1970).
[Crossref]

A. O. E. Animalu, Phys. Rev. 163, 557 (1967).
[Crossref]

F. S. Ham, Phys. Rev. 128, 82 (1962); Phys. Rev. 128, 1524 (1962).
[Crossref]

Phys. Rev. B (2)

D. Beaglehole and O. Hunderi, Phys. Rev. B 2, 309 (1970); Phys. Rev. B 2, 321 (1970).
[Crossref]

P. O. Nilsson, I. Lindau, and S. B. M. Hagstrom, Phys. Rev. B 1, 498 (1970).
[Crossref]

Proc. Phys. Soc. Lond. A (2)

D. A. Greenwood, Proc. Phys. Soc. Lond. A 71, 585 (1958).
[Crossref]

P. N. Butcher, Proc. Phys. Soc. Lond. A 64, 765 (1951).
[Crossref]

Rev. Opt. Theor. Instrum. (1)

G. Rasigni, Rev. Opt. Theor. Instrum. 41, 384 (1962); Rev. Opt. Theor. Instrum. 41, 566 (1962); Rev. Opt. Theor. Instrum. 41, 625 (1962).

Thin Solid Films (2)

N. Emeric and A. Emeric, Thin Solid Films 1, 13 (1967).
[Crossref]

J. P. Pétrakian and J. P. Palmari, Thin Solid Films 4, 423 (1969).
[Crossref]

Z. Phys. (2)

H. Wolter, Z. Phys. 113, 547 (1939).
[Crossref]

E. David, Z. Phys. 114, 389 (1939).
[Crossref]

Other (10)

T. E. Faber, in Ref. 1, p. 259.

f was made under dynamic ultrahigh vacuum.

The appearance of the replica made under ultrahigh vacuum suggests that the protective film of carbon was perhaps not sufficiently thick to prevent deterioriation of the layer by air.

T. N. Rhodin, in Structure and Properties of Thin Films, edited by C. A. Neugabauer, J. B. Newkirk, and D. A. Verlilyea (Wiley, New York, London, 1959), p. 87.

C. Kittel, in Introduction à la Physique du Solide (Dunod, Paris, 1958), p. 284.

A. H. Wilson, in The Theory of Metals (Cambridge, New York, 1936), p. 133.

We ascertained this by electron microscopy of replicas of the substrate that had received lithium deposits. No attack was noted.

J. M. Hodgson, in Ref. 1, p. 60.

P. Rouard, in Proceedings of the International Symposium on Basic Problems in Thin Films Physics, Clausthal Göttingen 1965, edited by R. Niedermayer and H. Mayer (Vandenboeck and Ruprecht, Göttingen, 1966), p. 263.

H. Mayer and B. Hietel, in Proceedings of the International Colloquium on Optical Properties and Electronic Structure of Metals and Alloys, Paris 1965, edited by F. Abelès (North–Holland, Amsterdam, 1966), p. 47.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1
Fig. 1

Transmittance vs incident energy of three lithium layers having optical thicknesses increasing in the order: C1, C2, and C3.

Fig. 2
Fig. 2

Optical conductivity σ(ω) × d vs incident energy for C1 (curve I) and C2 (curve II).

Fig. 3
Fig. 3

Carbon replica, made under static ultrahigh vacuum, of a lithium layer. Platinum shadow casting at an angle of 50°. The line represents 1 μm.

Fig. 4
Fig. 4

Carbon replica, made -under static ultrahigh vacuum, of a lithium layer. Platinum shadow casting at an angle of 65°. The line represents 1 μm.

Fig. 5
Fig. 5

Carbon replica, made under static ultrahigh vacuum, of a lithium layer. Platinum shadow casting at an angle of 65°. The line represents 1 μm.

Fig. 6
Fig. 6

Carbon replica, made under static ultrahigh vacuum, of a lithium layer. Platinum shadow casting at an angle of 50°. The line represents 1 μm.

Fig. 7
Fig. 7

Carbon replica made under static ultrahigh vacuum, of a lithium layer. Platinum shadow casting at an angle of 50°. The line represents 1 μm.

Fig. 8
Fig. 8

Carbon replica, made under static ultrahigh vacuum, of a lithium layer. Platinum shadow casting at an angle of 50°. The line represents 1 μm.

Fig. 9
Fig. 9

Carbon replica made after the lithium layer of Fig. 3 was subjected to the action of air. Platinum shadow casting at an angle of 50°. The line represents 1 μm.

Fig. 10
Fig. 10

Carbon replica made after the lithium layer of Fig. 4 was subjected to the action of air. Platinum shadow casting at an angle of 50°. The line represents 1 μm.

Fig. 11
Fig. 11

Carbon replica made after the lithium layer of Fig. 5 was subjected to the action of air. Platinum shadow casting at an angle of 50°. The Une represents 1 μm.

Fig. 12
Fig. 12

Carbon replica made after the lithium layer of Fig. 6 was subjected to the action of air. Platinum shadow casting at an angle of 50°. The Une represents 1 μm.

Fig. 13
Fig. 13

Carbon replica made after the lithium layer of Fig. 7 was subjected to the action of air. Platinum shadow casting at an angle of 50°. The line represents 1 μm.

Fig. 14
Fig. 14

Carbon replica made after the lithium layer of Fig. 8 was subjected to the action of air. Platinum shadow casting at an angle of 50°. The line represents 1 μm.

Fig. 15
Fig. 15

Carbon replica of lithium layer of Fig. 8 with different magnification. The Une represents 5 μm.

Fig. 16
Fig. 16

Carbon replica of lithium layer of Fig. 14 with different magnification. The line represents 5 μm.

Fig. 17
Fig. 17

Carbon replica made under static ultrahigh vacuum, of a very thin lithium layer. Platinum shadow casting at an angle of 50°. The line represents 1 μm.

Fig. 18
Fig. 18

Carbon replica made after the lithium layer of Fig. 17 was subjected to the action of air. Platinum shadow casting at an angle of 50°. The line represents 1 μm.

Fig. 19
Fig. 19

Optical conductivity σ(ω) vs incident energy. Dot-dash line: σD(ω) Drude’s theory; dotted line: σI(ω) Butcher (Ref. 18) with m* = 1.30 and V110 = 1.2 eV Ham (Ref. 24); dash line: σI(ω) Animalu (Ref. 19) with m* = 1.30; full line: experimental results plotted to an arbitrary scale.

Fig. 20
Fig. 20

Optical conductivity vs incident energy. Full line: Mathewson and Myers (Ref. 8); dot-dash line: Drude’s theory; dotted line: difference between these two absorptions.

Fig. 21
Fig. 21

Carbon replica, with platinum shadow casting at an angle of 65°, of a thick silver layer (like a mirror). (Replica made under static ultrahigh vacuum.) The line represents 1 μm.

Tables (1)

Tables Icon

Table I Layer characteristics.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

E t E 0 = ( 1 + r 1 ) ( 1 + r 2 ) e i n η e i n 2 η r 1 r 2 + e 2 i n η ,
r 1 = n 0 n n 0 + 1 , r 2 = n n 2 n + n 2 , η = 2 π d λ ,
T = n 2 n 0 | E t E 0 | 2 .
T = 4 n 0 n 2 ( n 0 + n 2 ) ( n 0 + n 2 + 4 η ν χ ) .
= n 2 = ν 2 χ 2 2 i ν χ .
σ = 2 ν χ ω 4 π = ν χ c λ ,
σ = c 8 π d ( 4 n 0 n 2 ( n 0 + n 2 ) T ( n 0 + n 2 ) ) .
σ ( ω ) = σ D ( ω ) + σ I ( ω ) .
σ D ( ω ) = N e 2 m * ω 2 τ ,
σ I ( ω ) = m e 2 | V 110 | 2 π ћ 4 G 110 ( ω + ω ) ( ω ω ) ω 3 if ω [ ω , ω + ] , σ I ( ω ) = 0 if ω ( , ω ] and [ ω + , ) .
ћ ω = A ( G 110 2 k F ) , ћ ω + = A ( G 110 + 2 k F ) ,
σ I ( ω ) = G m e 2 | W ˜ G | 2 12 π ћ 4 G ( ω + ω ) ( ω ω ) ω 3 .
σ ( ω ) = σ D ( ω ) + σ I ( ω ) + σ S ( ω ) .
σ ( ω ) = σ I ( ω ) + σ S ( ω ) .
* = + β [ ( 1 / p ) + ( s 0 ) ] ,
1 q ( a ) = ( a ) / ( a a ) f + 1 ,
σ = A { 2 ν χ / [ ( ν 2 χ 2 a ) f + a ] 2 + 4 ν 2 χ 2 f 2 } ,
σ ( ω ) = σ D ( ω ) + σ I ( ω ) + σ S ( ω )