Abstract

At the beginning of dark adaptation there is a sudden decrease of threshold that appears distinct from the subsequent course of regular dark adaptation. The present research indicates that the decrease cannot be a result of losing the lateral inhibitory effects that occurred during the light adaptation prior to dark adaptation. The results thus imply that the early threshold drop must be based on a process somewhere in the direct line from receptor to higher centers.

© 1973 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. D. Baker, J. Opt. Soc. Am. 53, 98 (1963).
    [Crossref] [PubMed]
  2. D. Y. Teller, Vision Res. 11, 1325 (1971).
    [Crossref] [PubMed]
  3. H. D. Baker, M. D. Doran, and K. E. Miller, J. Opt. Soc. Am. 49, 1065 (1959).
    [Crossref] [PubMed]
  4. W. A. H. Rushton, J. Physiol. (Lond.) 156, 166 (1961).
  5. K. O. Donner and T. Reuter, Vision Res. 7, 17 (1967).
    [Crossref] [PubMed]
  6. J. E. Dowling, Proc. R. Soc. B 170, 205 (1968).
    [Crossref]
  7. M. Alpern and W. A. H. Rushton, J. Physiol. (Lond.) 189, 519 (1967).
  8. G. Westheimer, J. Physiol. (Lond.) 190, 139 (1967).
  9. G. V. Békésy, J. Opt. Soc. Am. 50, 1060 (1960).
    [Crossref] [PubMed]
  10. W. S. Battersby and I. H. Wagman, Am. J. Physiol. 203, 359 (1962).
    [PubMed]
  11. K. T. Brown, K. Watanabe, and M. Murakami, Cold Spring Harbor Symp. Quant. Biol. 30, 457 (1965).
    [Crossref]

1971 (1)

D. Y. Teller, Vision Res. 11, 1325 (1971).
[Crossref] [PubMed]

1968 (1)

J. E. Dowling, Proc. R. Soc. B 170, 205 (1968).
[Crossref]

1967 (3)

M. Alpern and W. A. H. Rushton, J. Physiol. (Lond.) 189, 519 (1967).

G. Westheimer, J. Physiol. (Lond.) 190, 139 (1967).

K. O. Donner and T. Reuter, Vision Res. 7, 17 (1967).
[Crossref] [PubMed]

1965 (1)

K. T. Brown, K. Watanabe, and M. Murakami, Cold Spring Harbor Symp. Quant. Biol. 30, 457 (1965).
[Crossref]

1963 (1)

1962 (1)

W. S. Battersby and I. H. Wagman, Am. J. Physiol. 203, 359 (1962).
[PubMed]

1961 (1)

W. A. H. Rushton, J. Physiol. (Lond.) 156, 166 (1961).

1960 (1)

1959 (1)

Alpern, M.

M. Alpern and W. A. H. Rushton, J. Physiol. (Lond.) 189, 519 (1967).

Baker, H. D.

Battersby, W. S.

W. S. Battersby and I. H. Wagman, Am. J. Physiol. 203, 359 (1962).
[PubMed]

Békésy, G. V.

Brown, K. T.

K. T. Brown, K. Watanabe, and M. Murakami, Cold Spring Harbor Symp. Quant. Biol. 30, 457 (1965).
[Crossref]

Donner, K. O.

K. O. Donner and T. Reuter, Vision Res. 7, 17 (1967).
[Crossref] [PubMed]

Doran, M. D.

Dowling, J. E.

J. E. Dowling, Proc. R. Soc. B 170, 205 (1968).
[Crossref]

Miller, K. E.

Murakami, M.

K. T. Brown, K. Watanabe, and M. Murakami, Cold Spring Harbor Symp. Quant. Biol. 30, 457 (1965).
[Crossref]

Reuter, T.

K. O. Donner and T. Reuter, Vision Res. 7, 17 (1967).
[Crossref] [PubMed]

Rushton, W. A. H.

M. Alpern and W. A. H. Rushton, J. Physiol. (Lond.) 189, 519 (1967).

W. A. H. Rushton, J. Physiol. (Lond.) 156, 166 (1961).

Teller, D. Y.

D. Y. Teller, Vision Res. 11, 1325 (1971).
[Crossref] [PubMed]

Wagman, I. H.

W. S. Battersby and I. H. Wagman, Am. J. Physiol. 203, 359 (1962).
[PubMed]

Watanabe, K.

K. T. Brown, K. Watanabe, and M. Murakami, Cold Spring Harbor Symp. Quant. Biol. 30, 457 (1965).
[Crossref]

Westheimer, G.

G. Westheimer, J. Physiol. (Lond.) 190, 139 (1967).

Am. J. Physiol. (1)

W. S. Battersby and I. H. Wagman, Am. J. Physiol. 203, 359 (1962).
[PubMed]

Cold Spring Harbor Symp. Quant. Biol. (1)

K. T. Brown, K. Watanabe, and M. Murakami, Cold Spring Harbor Symp. Quant. Biol. 30, 457 (1965).
[Crossref]

J. Opt. Soc. Am. (3)

J. Physiol. (Lond.) (3)

M. Alpern and W. A. H. Rushton, J. Physiol. (Lond.) 189, 519 (1967).

G. Westheimer, J. Physiol. (Lond.) 190, 139 (1967).

W. A. H. Rushton, J. Physiol. (Lond.) 156, 166 (1961).

Proc. R. Soc. B (1)

J. E. Dowling, Proc. R. Soc. B 170, 205 (1968).
[Crossref]

Vision Res. (2)

K. O. Donner and T. Reuter, Vision Res. 7, 17 (1967).
[Crossref] [PubMed]

D. Y. Teller, Vision Res. 11, 1325 (1971).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Early dark adaptation. Showing the behavior of the threshold during transition from a difference threshold on an adapting field, to an absolute threshold during the beginning of dark adaptation. Time refers to the initiation of the stimulus flash. The adapting field is extinguished at time 0. Stages are numbered as in the text.

Fig. 2
Fig. 2

Early dark adaptation following light adaptation to a large field. Time refers to the initiation of the 20-ms stimulus flash. The adapting field is extinguished at time 0. The standard deviation of the mean is shown at each point by the vertical line. The spatial relationships between the test stimulus and the adapting field are shown in the upper-right corner of the figure.

Fig. 3
Fig. 3

Early dark adaptation following light adaptation to an area the same size as the test stimulus. Legend same as for Fig. 2. The terminal absolute threshold is indicated at A. T.

Fig. 4
Fig. 4

Early dark adaptation following light adaptation to a large field, using a line test stimulus. Legend same as Figs. 2 and 3.

Fig. 5
Fig. 5

Early dark adaptation following light adaptation to an area the same size as the test stimulus, using a line test stimulus. Legend same as Figs. 2 and 3.

Fig. 6
Fig. 6

The spatial relationships between the adapting field and the line test stimulus for three locations of the test stimulus. The test stimulus is indicated in black. Each arrangement is numbered as in the test.

Fig. 7
Fig. 7

Early dark adaptation curves resulting from the three preadapting situations indicated in Fig. 6.