Abstract

Seven T1u infrared active modes account for the pyrochlore structure. Decreasing A3+ cation size in the rare-earth zirconates increases disorder among the cations and the tendency to form the fluorite structure. There is a general trend of increasing absorption frequencies with smaller cell sizes for the higher-wave-number bands, whereas for the lower-wave-number bands there is a mass dependency. New assignments of lattice modes are made for the fifth and sixth highest bands.

© 1973 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. McCaffrey, N. T. McDevitt, and C. M. Phillippi, J. Opt. Soc. Am. 61, 209 (1971).
    [Crossref]
  2. B. A. DeAngelis, R. E. Newnham, and W. B. White, Am. Mineral. 57, 255 (1972).
  3. A. Kuznetsov and E. Keler, Bull. Acad. Sci. USSR Chem. Ser. 12, 2011 (1966).
  4. R. Collongues, Ann. Chim. (Paris) 8, 395 (1963).
  5. W. Klee and G. Weitz, J. Inorg. Nucl. Chem. 31, 2367 (1969).
    [Crossref]
  6. F. Cotton, Chemical Applications of Group Theory (Wiley–Interscience, New York, 1967).
  7. H. Hoekstra and F. Gallagher, Inorg. Chem. 7, 2553 (1968).
    [Crossref]
  8. O. Knop, F. Brisse, and L. Castelliz, Can. J. Chem. 47, 971 (1969).
    [Crossref]
  9. F. Brisse and O. Knop, Can. J. Chem. 46, 859 (1968).
    [Crossref]
  10. R. McCauley and F. A. Hummel, J. Lumin. 6, 105 (1973).
    [Crossref]

1973 (1)

R. McCauley and F. A. Hummel, J. Lumin. 6, 105 (1973).
[Crossref]

1972 (1)

B. A. DeAngelis, R. E. Newnham, and W. B. White, Am. Mineral. 57, 255 (1972).

1971 (1)

1969 (2)

O. Knop, F. Brisse, and L. Castelliz, Can. J. Chem. 47, 971 (1969).
[Crossref]

W. Klee and G. Weitz, J. Inorg. Nucl. Chem. 31, 2367 (1969).
[Crossref]

1968 (2)

H. Hoekstra and F. Gallagher, Inorg. Chem. 7, 2553 (1968).
[Crossref]

F. Brisse and O. Knop, Can. J. Chem. 46, 859 (1968).
[Crossref]

1966 (1)

A. Kuznetsov and E. Keler, Bull. Acad. Sci. USSR Chem. Ser. 12, 2011 (1966).

1963 (1)

R. Collongues, Ann. Chim. (Paris) 8, 395 (1963).

Brisse, F.

O. Knop, F. Brisse, and L. Castelliz, Can. J. Chem. 47, 971 (1969).
[Crossref]

F. Brisse and O. Knop, Can. J. Chem. 46, 859 (1968).
[Crossref]

Castelliz, L.

O. Knop, F. Brisse, and L. Castelliz, Can. J. Chem. 47, 971 (1969).
[Crossref]

Collongues, R.

R. Collongues, Ann. Chim. (Paris) 8, 395 (1963).

Cotton, F.

F. Cotton, Chemical Applications of Group Theory (Wiley–Interscience, New York, 1967).

DeAngelis, B. A.

B. A. DeAngelis, R. E. Newnham, and W. B. White, Am. Mineral. 57, 255 (1972).

Gallagher, F.

H. Hoekstra and F. Gallagher, Inorg. Chem. 7, 2553 (1968).
[Crossref]

Hoekstra, H.

H. Hoekstra and F. Gallagher, Inorg. Chem. 7, 2553 (1968).
[Crossref]

Hummel, F. A.

R. McCauley and F. A. Hummel, J. Lumin. 6, 105 (1973).
[Crossref]

Keler, E.

A. Kuznetsov and E. Keler, Bull. Acad. Sci. USSR Chem. Ser. 12, 2011 (1966).

Klee, W.

W. Klee and G. Weitz, J. Inorg. Nucl. Chem. 31, 2367 (1969).
[Crossref]

Knop, O.

O. Knop, F. Brisse, and L. Castelliz, Can. J. Chem. 47, 971 (1969).
[Crossref]

F. Brisse and O. Knop, Can. J. Chem. 46, 859 (1968).
[Crossref]

Kuznetsov, A.

A. Kuznetsov and E. Keler, Bull. Acad. Sci. USSR Chem. Ser. 12, 2011 (1966).

McCaffrey, J. F.

McCauley, R.

R. McCauley and F. A. Hummel, J. Lumin. 6, 105 (1973).
[Crossref]

McDevitt, N. T.

Newnham, R. E.

B. A. DeAngelis, R. E. Newnham, and W. B. White, Am. Mineral. 57, 255 (1972).

Phillippi, C. M.

Weitz, G.

W. Klee and G. Weitz, J. Inorg. Nucl. Chem. 31, 2367 (1969).
[Crossref]

White, W. B.

B. A. DeAngelis, R. E. Newnham, and W. B. White, Am. Mineral. 57, 255 (1972).

Am. Mineral. (1)

B. A. DeAngelis, R. E. Newnham, and W. B. White, Am. Mineral. 57, 255 (1972).

Ann. Chim. (Paris) (1)

R. Collongues, Ann. Chim. (Paris) 8, 395 (1963).

Bull. Acad. Sci. USSR Chem. Ser. (1)

A. Kuznetsov and E. Keler, Bull. Acad. Sci. USSR Chem. Ser. 12, 2011 (1966).

Can. J. Chem. (2)

O. Knop, F. Brisse, and L. Castelliz, Can. J. Chem. 47, 971 (1969).
[Crossref]

F. Brisse and O. Knop, Can. J. Chem. 46, 859 (1968).
[Crossref]

Inorg. Chem. (1)

H. Hoekstra and F. Gallagher, Inorg. Chem. 7, 2553 (1968).
[Crossref]

J. Inorg. Nucl. Chem. (1)

W. Klee and G. Weitz, J. Inorg. Nucl. Chem. 31, 2367 (1969).
[Crossref]

J. Lumin. (1)

R. McCauley and F. A. Hummel, J. Lumin. 6, 105 (1973).
[Crossref]

J. Opt. Soc. Am. (1)

Other (1)

F. Cotton, Chemical Applications of Group Theory (Wiley–Interscience, New York, 1967).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Infrared-absorption spectra of La15EuZr16O56, Sm2Zr2O7, Ho2Zr2O7, and Tm2Zr2O7.

Fig. 2
Fig. 2

Infrared-absorption spectra of Yb2Zr2O7, Y15EuZr16O56, and Gd15EuTi16O56.

Tables (5)

Tables Icon

Table I Pyrochlore structure data.

Tables Icon

Table II Calculation of the reducible representation characters, χR.

Tables Icon

Table III Classification of normal modes. Of all the symmetry species of the reduced representation, Γ, only 7T1u modes are infrared active.

Tables Icon

Table IV Assignment of infrared-absorption lattice modes.

Tables Icon

Table V Infrared-absorption maxima of various compounds.