Abstract

Comparisons of experimental data with theory for the diffracted fields behind a parallel planar array of dielectric cylinders indicate the importance of iterative focusing in explaining field anomalies.

© 1973 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Barkley, Thesis, McGill University, Montreal (1971).
  2. B. Howarth and T. Pavlasek, IEEE Trans. Microwave Theory Tech. 20, 623 (1972).
    [Crossref]
  3. C. H. Palmer, J. Opt. Soc. Am. 42, 269 (1952).
    [Crossref]
  4. C. H. Palmer, J. Opt. Soc. Am. 46, 50 (1956).
    [Crossref]
  5. G. Boivin and R. Tremblay, Can. J. Phys. 40, 1604 (1963).
    [Crossref]

1972 (1)

B. Howarth and T. Pavlasek, IEEE Trans. Microwave Theory Tech. 20, 623 (1972).
[Crossref]

1963 (1)

G. Boivin and R. Tremblay, Can. J. Phys. 40, 1604 (1963).
[Crossref]

1956 (1)

1952 (1)

Barkley, L.

L. Barkley, Thesis, McGill University, Montreal (1971).

Boivin, G.

G. Boivin and R. Tremblay, Can. J. Phys. 40, 1604 (1963).
[Crossref]

Howarth, B.

B. Howarth and T. Pavlasek, IEEE Trans. Microwave Theory Tech. 20, 623 (1972).
[Crossref]

Palmer, C. H.

Pavlasek, T.

B. Howarth and T. Pavlasek, IEEE Trans. Microwave Theory Tech. 20, 623 (1972).
[Crossref]

Tremblay, R.

G. Boivin and R. Tremblay, Can. J. Phys. 40, 1604 (1963).
[Crossref]

Can. J. Phys. (1)

G. Boivin and R. Tremblay, Can. J. Phys. 40, 1604 (1963).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

B. Howarth and T. Pavlasek, IEEE Trans. Microwave Theory Tech. 20, 623 (1972).
[Crossref]

J. Opt. Soc. Am. (2)

Other (1)

L. Barkley, Thesis, McGill University, Montreal (1971).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

A planar array of cylinders is shown in a radial plane of the anechoic room. The parallel-polarized, normally incident electromagnetic wave is propagating in the axial direction.

Fig. 2
Fig. 2

The diffracted field in a radial plane 10.8 cm behind an array of three cylinders of diameter 1 2 λ. The upper scan shows radial probe position vs the logarithm of the irradiance relative to the irradiance of the incident field. The lower scan shows probe position versus the relative phase in degrees. The solid curves are computed results using the independent-scattering approximation. The circles indicate experimental results.

Fig. 3
Fig. 3

The diffracted field in a plane 10.8 cm behind an array of 9 λ-diam cylinders.

Fig. 4
Fig. 4

The relative irradiance of the diffracted field in an axial plane through the central cylinder of an array of nine ( 1 2 λ diam) cylinders.

Fig. 5
Fig. 5

The relative irradiance of the diffracted field in an axial plane through the central cylinder of an array of nine (λ diam) cylinders.

Fig. 6
Fig. 6

Contours of equal relative irradiance for the scattered field (with respect to the incident field) near an isolated λ-diam cylinder.

Fig. 7
Fig. 7

Contours of equal relative irradiance for the scattered field (with respect to the incident field) near an isolated 1 2 λ-diam cylinder.