Abstract

Fundamental limitations of estimating the amplitudes and phases of interference fringes at low light levels are determined by the finite number of photoevents registered in the measurement. By modeling the receiver as a spatial array of photon-counting detectors, results are obtained that permit specification of the minimum number of photoevents required for estimation of fringe parameters to a given accuracy. Both a discrete Fourier-transform estimator and an optimum joint maximum-likelihood estimator are considered. In addition, the Cramér–Rao statistical error bounds are derived, specifying the limiting performance of all unbiased estimators in terms of the collected light flux. The performance of the spatial sampling receiver is compared with that of an alternate technique for fringe-parameter estimation that uses a barred grid and temporal sampling of a moving fringe.

© 1973 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Estimation of Object Parameters by a Quantum-Limited Optical System

CARL W. HELSTROM
J. Opt. Soc. Am. 60(2) 233-239 (1970)

Error sources and algorithms for white-light fringe estimation at low light levels

Mark Milman and Scott Basinger
Appl. Opt. 41(14) 2655-2671 (2002)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (53)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription