Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Introduction to Fourier Optics (McGraw–Hill, New York, 1968), p. 83.
  2. R. N. Bracewell and A. R. Thompson, Astrophys. Lett. 182, 77 (1973).
    [Crossref]
  3. Tables of Integral Transforms, edited by A. Erdélyi (McGraw–Hill, New York, 1954), Vol. 2, p. 181.

1973 (1)

R. N. Bracewell and A. R. Thompson, Astrophys. Lett. 182, 77 (1973).
[Crossref]

Bracewell, R. N.

R. N. Bracewell and A. R. Thompson, Astrophys. Lett. 182, 77 (1973).
[Crossref]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw–Hill, New York, 1968), p. 83.

Thompson, A. R.

R. N. Bracewell and A. R. Thompson, Astrophys. Lett. 182, 77 (1973).
[Crossref]

Astrophys. Lett. (1)

R. N. Bracewell and A. R. Thompson, Astrophys. Lett. 182, 77 (1973).
[Crossref]

Other (2)

Tables of Integral Transforms, edited by A. Erdélyi (McGraw–Hill, New York, 1954), Vol. 2, p. 181.

J. W. Goodman, Introduction to Fourier Optics (McGraw–Hill, New York, 1968), p. 83.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

An aperture consisting of nine concentric slits, the width of a slit being 1/15 of the distance between slits.

Fig. 2
Fig. 2

Fraunhofer diffraction pattern of the nine-slit aperture.

Fig. 3
Fig. 3

The electric-field distribution in the neighborhood of the kth ring lobe is dominated by the half-order derivative of sinc[(2N + 1)(Qrk)], where sincr = (πr)−1 sinπr.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

[ n = 1 N 2 π n Q J 0 ( 2 π n Q ρ ) ] 2 .
d d x π 1 2 x f ( t ) ( t x ) 1 2 d t .