Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Introduction to Fourier Optics (McGraw–Hill, New York, 1968), p. 83.
  2. R. N. Bracewell and A. R. Thompson, Astrophys. Lctt. 182, 77 (1973).
    [CrossRef]
  3. Tables of Integral Transforms, edited by A. Erdélyi (McGraw–Hill, New York, 1954), Vol. 2, p. 181.

1973 (1)

R. N. Bracewell and A. R. Thompson, Astrophys. Lctt. 182, 77 (1973).
[CrossRef]

Bracewell, R. N.

R. N. Bracewell and A. R. Thompson, Astrophys. Lctt. 182, 77 (1973).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw–Hill, New York, 1968), p. 83.

Thompson, A. R.

R. N. Bracewell and A. R. Thompson, Astrophys. Lctt. 182, 77 (1973).
[CrossRef]

Other (3)

J. W. Goodman, Introduction to Fourier Optics (McGraw–Hill, New York, 1968), p. 83.

R. N. Bracewell and A. R. Thompson, Astrophys. Lctt. 182, 77 (1973).
[CrossRef]

Tables of Integral Transforms, edited by A. Erdélyi (McGraw–Hill, New York, 1954), Vol. 2, p. 181.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

An aperture consisting of nine concentric slits, the width of a slit being 1/15 of the distance between slits.

Fig. 2
Fig. 2

Fraunhofer diffraction pattern of the nine-slit aperture.

Fig. 3
Fig. 3

The electric-field distribution in the neighborhood of the kth ring lobe is dominated by the half-order derivative of sinc[(2N + 1)(Qrk)], where sincr = (πr)−1 sinπr.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

[ n = 1 N 2 π n Q J 0 ( 2 π n Q ρ ) ] 2 .
d d x π 1 2 x f ( t ) ( t x ) 1 2 d t .