Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Wolf, Nuovo Cimento 13, 1165 (1959).
    [Crossref]
  2. M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, Oxford and New York, 1970), § 10.8.
  3. We implicitly assume that the field is stationary and ergodic, so that the average may be interpreted either as a time average or as an ensemble average.
  4. L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965), Sec. 4.5.
    [Crossref]
  5. J. Peřina, Coherence of Light (Van Nostrand Reinhold, London, 1972), Ch. 10.
  6. I. S. Reed, IRE Trans, on Information Theory 8, 194 (1962).
    [Crossref]
  7. C. L. Mehta, in Lectures on Theoretical Physics, edited by W.E. Brittin (University of Colorado Press, Boulder, Colorado, 1965), Vol. 7, p. 398.
  8. E. Wolf, Proc. Phys. Soc. Lond. 76, 424 (1960).
    [Crossref]
  9. R. Hanbury Brown and R. Q. Twiss, Nature (Lond.) 177, 27 (1956); Proc. R. Soc. A 242, 300 (1957); Proc. R. Soc. A 243, 291 (1957).
    [Crossref]

1965 (1)

L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965), Sec. 4.5.
[Crossref]

1962 (1)

I. S. Reed, IRE Trans, on Information Theory 8, 194 (1962).
[Crossref]

1960 (1)

E. Wolf, Proc. Phys. Soc. Lond. 76, 424 (1960).
[Crossref]

1959 (1)

E. Wolf, Nuovo Cimento 13, 1165 (1959).
[Crossref]

1956 (1)

R. Hanbury Brown and R. Q. Twiss, Nature (Lond.) 177, 27 (1956); Proc. R. Soc. A 242, 300 (1957); Proc. R. Soc. A 243, 291 (1957).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, Oxford and New York, 1970), § 10.8.

Hanbury Brown, R.

R. Hanbury Brown and R. Q. Twiss, Nature (Lond.) 177, 27 (1956); Proc. R. Soc. A 242, 300 (1957); Proc. R. Soc. A 243, 291 (1957).
[Crossref]

Mandel, L.

L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965), Sec. 4.5.
[Crossref]

Mehta, C. L.

C. L. Mehta, in Lectures on Theoretical Physics, edited by W.E. Brittin (University of Colorado Press, Boulder, Colorado, 1965), Vol. 7, p. 398.

Perina, J.

J. Peřina, Coherence of Light (Van Nostrand Reinhold, London, 1972), Ch. 10.

Reed, I. S.

I. S. Reed, IRE Trans, on Information Theory 8, 194 (1962).
[Crossref]

Twiss, R. Q.

R. Hanbury Brown and R. Q. Twiss, Nature (Lond.) 177, 27 (1956); Proc. R. Soc. A 242, 300 (1957); Proc. R. Soc. A 243, 291 (1957).
[Crossref]

Wolf, E.

L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965), Sec. 4.5.
[Crossref]

E. Wolf, Proc. Phys. Soc. Lond. 76, 424 (1960).
[Crossref]

E. Wolf, Nuovo Cimento 13, 1165 (1959).
[Crossref]

M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, Oxford and New York, 1970), § 10.8.

IRE Trans, on Information Theory (1)

I. S. Reed, IRE Trans, on Information Theory 8, 194 (1962).
[Crossref]

Nature (Lond.) (1)

R. Hanbury Brown and R. Q. Twiss, Nature (Lond.) 177, 27 (1956); Proc. R. Soc. A 242, 300 (1957); Proc. R. Soc. A 243, 291 (1957).
[Crossref]

Nuovo Cimento (1)

E. Wolf, Nuovo Cimento 13, 1165 (1959).
[Crossref]

Proc. Phys. Soc. Lond. (1)

E. Wolf, Proc. Phys. Soc. Lond. 76, 424 (1960).
[Crossref]

Rev. Mod. Phys. (1)

L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965), Sec. 4.5.
[Crossref]

Other (4)

J. Peřina, Coherence of Light (Van Nostrand Reinhold, London, 1972), Ch. 10.

M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, Oxford and New York, 1970), § 10.8.

We implicitly assume that the field is stationary and ergodic, so that the average may be interpreted either as a time average or as an ensemble average.

C. L. Mehta, in Lectures on Theoretical Physics, edited by W.E. Brittin (University of Colorado Press, Boulder, Colorado, 1965), Vol. 7, p. 398.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (15)

Equations on this page are rendered with MathJax. Learn more.

E i j = E i * ( t ) E j ( t ) ,
| E | = E x x E y y E x y E y x
Tr E = E x x + E y y ,
P = [ 1 4 | E | ( Tr E ) 2 ] 1 2 .
Δ I i ( t ) = I i ( t ) I i ( t ) , ( i , j = x , y )
I i ( t ) = E i * ( t ) E i ( t ) , ( i , j = x , y )
σ i j = [ Δ I i ( t ) Δ I j ( t ) ] 1 2 .
Δ I i Δ I j = ( I i I i ) ( I j I j ) = I i I j I i I j = E i * E i E j * E j E i * E i E j * E j .
E i * E i E j * E j = E i * E i E i * E i + E i * E j E j * E i
Δ I i Δ I j = E i j E j i .
σ i j = ( E i j E j i ) 1 2 .
| σ | σ x x σ y y σ x y σ y x = E x x E y y E x y E y x
Tr σ σ x x + σ y y = E x x + E y y .
| σ | = | E | , Tr σ = Tr E ,
P = [ 1 4 | σ | ( Tr σ ) 2 ] 1 2 .