Abstract

A method for determining the depolarization ratio in Raman spectroscopy as a function of the scattering frequency (to the resolution limit of the spectrometer) is described. The method is analyzed briefly and compared to current methods. Experimental results for four well-known Raman bands of liquids are reported.

PDF Article

References

  • View by:
  • |
  • |

  1. G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, New York, 1945), pp. 248–249.
  2. S. P. S. Porto, J. Opt. Soc. Am. 56, 1585 (1966).
  3. G. Placzek, in Marx's Handbook of Radiol, Vol. 6 (Akademische Verlagsgesellshaft VI, Leipzig, 1934), pp. 209–374.
  4. A summary of various methods for determining depolarization ratios is contained in C. Allemand, Appl. Spectrosc. 24, 348 (1970). See also Ref. 5.
  5. H. H. Claasen and H. Selig, J. Shamir, Appl. Spectrosc. 23, 8 (1969).
  6. A commercially available system that measures depolarization ratios as functions of frequency uses a mechanically chopped beam to accomplish the purpose.
  7. At least three means exist. In Ref. 2, the spectrometer was calibrated for all polarization states so that a correction could be applied as data were being reduced. Optical devices, as a half-wave plate or polarization scrambler, can be placed between the spectrometer and the polarizing filter to eliminate the need for correction. See Ref. 4.
  8. A. Yariv, Quantum Electronics (Wiley, New York, 1967), pp. 310–314.
  9. Some authors use ρ=2ID/(ID+Ip), which gives a range of zero to 6/7. This is discussed in Ref. 3.
  10. Other authors have considered aperture error. See N. J. Bridge and A. D. Buckingham, Proc. Roy. Soc. (London) A295, 334 (1966); P. Dawson, Spectrochim. Acta 28A, 715 (1972); and Ref. 4.
  11. R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969), p. 243.
  12. Reference 1, pp. 215–218, 276–277.
  13. A. Langseth, J. O. Sorensen, and J. R. Nielson, J. Chem. Phys. 2, 402 (1934).

Allemand, C.

A summary of various methods for determining depolarization ratios is contained in C. Allemand, Appl. Spectrosc. 24, 348 (1970). See also Ref. 5.

Bridge, N. J.

Other authors have considered aperture error. See N. J. Bridge and A. D. Buckingham, Proc. Roy. Soc. (London) A295, 334 (1966); P. Dawson, Spectrochim. Acta 28A, 715 (1972); and Ref. 4.

Buckingham, A. D.

Other authors have considered aperture error. See N. J. Bridge and A. D. Buckingham, Proc. Roy. Soc. (London) A295, 334 (1966); P. Dawson, Spectrochim. Acta 28A, 715 (1972); and Ref. 4.

Claasen, H. H.

H. H. Claasen and H. Selig, J. Shamir, Appl. Spectrosc. 23, 8 (1969).

Herzberg, G.

G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, New York, 1945), pp. 248–249.

Langseth, A.

A. Langseth, J. O. Sorensen, and J. R. Nielson, J. Chem. Phys. 2, 402 (1934).

Nielson, J. R.

A. Langseth, J. O. Sorensen, and J. R. Nielson, J. Chem. Phys. 2, 402 (1934).

Pantell, R. H.

R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969), p. 243.

Placzek, G.

G. Placzek, in Marx's Handbook of Radiol, Vol. 6 (Akademische Verlagsgesellshaft VI, Leipzig, 1934), pp. 209–374.

Porto, S. P. S.

S. P. S. Porto, J. Opt. Soc. Am. 56, 1585 (1966).

Puthoff, H. E.

R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969), p. 243.

Selig, H.

H. H. Claasen and H. Selig, J. Shamir, Appl. Spectrosc. 23, 8 (1969).

Sorensen, J. O.

A. Langseth, J. O. Sorensen, and J. R. Nielson, J. Chem. Phys. 2, 402 (1934).

Yariv, A.

A. Yariv, Quantum Electronics (Wiley, New York, 1967), pp. 310–314.

Other

G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, New York, 1945), pp. 248–249.

S. P. S. Porto, J. Opt. Soc. Am. 56, 1585 (1966).

G. Placzek, in Marx's Handbook of Radiol, Vol. 6 (Akademische Verlagsgesellshaft VI, Leipzig, 1934), pp. 209–374.

A summary of various methods for determining depolarization ratios is contained in C. Allemand, Appl. Spectrosc. 24, 348 (1970). See also Ref. 5.

H. H. Claasen and H. Selig, J. Shamir, Appl. Spectrosc. 23, 8 (1969).

A commercially available system that measures depolarization ratios as functions of frequency uses a mechanically chopped beam to accomplish the purpose.

At least three means exist. In Ref. 2, the spectrometer was calibrated for all polarization states so that a correction could be applied as data were being reduced. Optical devices, as a half-wave plate or polarization scrambler, can be placed between the spectrometer and the polarizing filter to eliminate the need for correction. See Ref. 4.

A. Yariv, Quantum Electronics (Wiley, New York, 1967), pp. 310–314.

Some authors use ρ=2ID/(ID+Ip), which gives a range of zero to 6/7. This is discussed in Ref. 3.

Other authors have considered aperture error. See N. J. Bridge and A. D. Buckingham, Proc. Roy. Soc. (London) A295, 334 (1966); P. Dawson, Spectrochim. Acta 28A, 715 (1972); and Ref. 4.

R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969), p. 243.

Reference 1, pp. 215–218, 276–277.

A. Langseth, J. O. Sorensen, and J. R. Nielson, J. Chem. Phys. 2, 402 (1934).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.