W. Holzer, W. F. Murphy, and H. J. Bernstein, J. Chem. Phys. 52, 399 (1970).

W. F. Murphy, W. Holzer, and H. J. Bernstein, Appl. Spectrosc. 23, 211 (1969).

K. Sakurai and H. P. Broida, J. Chem. Phys. 50, 2404 (1969).

D. G. Fouche and R. K. Chang, Appl. Phys. Letters 20, 256 (1972).

D. G. Fouche and R. K. Chang, Appl. Phys. Letters 18, 579 (1971).

E. J. Stansbiiry, M. F. Crawford, and H. L. Welch, Can. J. Phys. 31, 954 (1953).

D. G. Fouche and R. K. Chang, Appl. Phys. Letters 18, 579 (1971).

D. G. Fouche and R. K. Chang, Appl. Phys. Letters 20, 256 (1972).

C. M. Penney, L. M. Goldman, and M. Lapp, Nature Phys. Sci. 235, 110 (1972).

G. Herzberg, Molecular Spectra and Molecular Structure, I. Spectra of Diatomnic Molecules, 2nd ed. (Van Nostrand Reinhold, New York, 1950), p. 128.

W. F. Murphy, W. Holzer, and H. J. Bernstein, Appl. Spectrosc. 23, 211 (1969).

W. Holzer, W. F. Murphy, and H. J. Bernstein, J. Chem. Phys. 52, 399 (1970).

Yoshiaki Kato and Hiroski Takuma, J. Opt. Soc. Am. 61, 347 (1971).

Indices of refraction were computed from the dispersion relationships for each of the gases considered here. Sources for dispersion equations and indices are E. R. Peck and B. N. Khanna, J. Opt. Soc. Am. 56, 1059 (1966); C. W. Allen, Astrophysical Quantities (Athens Press, New York, 1963), p. 87; Landolt-Bornstein (Springer, Berlin, 1950), Table 1, p. 401; International Critical Tables (McGraw-Hill, New York, 1930), Vol. 7, pp. 1–11.

C. M. Penney, L. M. Goldman, and M. Lapp, Nature Phys. Sci. 235, 110 (1972).

W. F. Murphy, W. Holzer, and H. J. Bernstein, Appl. Spectrosc. 23, 211 (1969).

W. Holzer, W. F. Murphy, and H. J. Bernstein, J. Chem. Phys. 52, 399 (1970).

Indices of refraction were computed from the dispersion relationships for each of the gases considered here. Sources for dispersion equations and indices are E. R. Peck and B. N. Khanna, J. Opt. Soc. Am. 56, 1059 (1966); C. W. Allen, Astrophysical Quantities (Athens Press, New York, 1963), p. 87; Landolt-Bornstein (Springer, Berlin, 1950), Table 1, p. 401; International Critical Tables (McGraw-Hill, New York, 1930), Vol. 7, pp. 1–11.

C. M. Penney, L. M. Goldman, and M. Lapp, Nature Phys. Sci. 235, 110 (1972).

K. Sakurai and H. P. Broida, J. Chem. Phys. 50, 2404 (1969).

E. J. Stansbiiry, M. F. Crawford, and H. L. Welch, Can. J. Phys. 31, 954 (1953).

Yoshiaki Kato and Hiroski Takuma, J. Opt. Soc. Am. 61, 347 (1971).

E. J. Stansbiiry, M. F. Crawford, and H. L. Welch, Can. J. Phys. 31, 954 (1953).

E. J. Stansbiiry, M. F. Crawford, and H. L. Welch, Can. J. Phys. 31, 954 (1953).

W. F. Murphy, W. Holzer, and H. J. Bernstein, Appl. Spectrosc. 23, 211 (1969).

D. G. Fouche and R. K. Chang, Appl. Phys. Letters 18, 579 (1971).

D. G. Fouche and R. K. Chang, Appl. Phys. Letters 20, 256 (1972).

C. M. Penney, L. M. Goldman, and M. Lapp, Nature Phys. Sci. 235, 110 (1972).

The collection factor *F*_{c} is defined for the particular scattering geometry of laser Raman spectrometer, in which the spatial width of the object, i.e., the Raman scattered light from the scattering volume, is finite and small. When the entrance slits are wide compared to the spatial width of the object and the spectral bandwidth of the spectrometer is wider than the natural linewidth of the Raman scattered light, then *F*_{c}≃1. When the slits are narrow, then *F*_{c} is the ratio of the integrated intensity of the measured Raman line to the integrated area of the same line measured with wide slits. Integrated intensity is used here as the measured area of the Raman line divided by the spectral slit width.

W. Holzer, W. F. Murphy, and H. J. Bernstein, J. Chem. Phys. 52, 399 (1970).

K. Sakurai and H. P. Broida, J. Chem. Phys. 50, 2404 (1969).

G. Herzberg, Molecular Spectra and Molecular Structure, I. Spectra of Diatomnic Molecules, 2nd ed. (Van Nostrand Reinhold, New York, 1950), p. 128.

The differential Rayleigh cross section for incident polarized laser light and orthogonal scattering geometry was computed from the equations (*d*σ/*d*Ω)_{Ray}= (3/8π)σ_{tot}, where σ_{tot}= 128π^{5}α^{2}/3λ^{4} and α = *n*^{2}-1/4π*N*≃*n* - ½π*N*. α is the polarizability, *n* the index of refraction, *N* the number density of gas molecules, λ the wavelength, and σ_{tot} the integrated (total) Rayleigh scattering cross section per molecule, assuming no depolarization. Corrections for finite depolarization are small. Explanation of Rayleigh scattering is given in the standard text: S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960), p. 35.

Indices of refraction were computed from the dispersion relationships for each of the gases considered here. Sources for dispersion equations and indices are E. R. Peck and B. N. Khanna, J. Opt. Soc. Am. 56, 1059 (1966); C. W. Allen, Astrophysical Quantities (Athens Press, New York, 1963), p. 87; Landolt-Bornstein (Springer, Berlin, 1950), Table 1, p. 401; International Critical Tables (McGraw-Hill, New York, 1930), Vol. 7, pp. 1–11.

Yoshiaki Kato and Hiroski Takuma, J. Opt. Soc. Am. 61, 347 (1971).