Abstract

The differential Raman cross sections of the main Raman-active vibrations have been measured in the gases N2, O2, H2, CO, NO, CO2, SO2, N2O, H2S, NH3, ND3, CH4, C2H6, and C6H6 using 488.0-nm laser light. The present results are compared with previous measurements made at other wavelengths. The Raman cross sections of the rotational lines in the diatomic gases were also measured, as were the vibrational-rotational lines of O2 and N2. Absolute measurement of the Raman cross sections were performed two ways: (i) by calibrating the Raman spectrometer, and (ii) by comparing the unknown against liquid benzene (for which the Raman cross section has been measured). Results of these measurements compare reasonably well with previous determinations for which corrections for the υ4 frequency dependence were made.

© 1973 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription