Abstract

The amount of light power that is transmitted within a semi-infinite circular optical fiber when it is illuminated obliquely by a coherent beam of light is determined from an electromagnetic-theory analysis. The limit λ→0 is not classical geometric optics, i.e., not that found by tracing all rays along the fiber. Instead, the limit λ→0 corresponds to that of treating all rays as if they were meridional, i.e., as if they cross the fiber axis, ignoring rays skew to the axis. Thus, ray tracing is incorrect for fibers illuminated by coherent light. However, the acceptance property of an optical fiber illuminated by coherent light is very simply found from meridional ray tracing, if the dimensionless quantity 2 π ρ [ n<sub>1</sub><sup>2</sup> - n<sup>2</sup><sub>2</sub>}<sup>½</sup>/λ is much greater than unity, where ρ is the fiber radius, λ the wavelength of light in vacuum, and n<sub>1</sub>, n<sub>2</sub> the refractive indices of the fiber and its surround, respectively.

PDF Article

References

  • View by:
  • |
  • |

  1. D. Gloge, Proc. Inst. Electr. Eng. A 58, 1513 (1970).
  2. N. S. Kapany, Fiber Optics (Academic, New York, 1967).
  3. J. M. Enoch, J. Opt. Soc. Am. 53, 57 (1963).
  4. F. G. Varela and W. Wiitanen, J. Gen. Physiol. 55, 336 (1970).
  5. R. J. Potter, J. Opt. Soc. Am. 51, 1079 (1961).
  6. A. W. Snyder, IEEE Trans. Microwave Theory Tech. 17, 1130 (1969).
  7. E. Snitzer, J. Opt. Soc. Am. 51, 491 (1961).
  8. A. W. Snyder, J. Opt. Soc. Am. 56, 601 (1966).
  9. A. W. Snyder, IEEE Trans. Microwave Theory Tech. 17, 1138 (1969).
  10. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962), p. 292.
  11. M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1965), p. 38.
  12. M. Kline and I. W. Kay, Electromagnetic Theory and Geometric Optics (Wiley-Interscience, New York, 1965).

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1965), p. 38.

Enoch, J. M.

J. M. Enoch, J. Opt. Soc. Am. 53, 57 (1963).

Gloge, D.

D. Gloge, Proc. Inst. Electr. Eng. A 58, 1513 (1970).

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962), p. 292.

Kapany, N. S.

N. S. Kapany, Fiber Optics (Academic, New York, 1967).

Kay, I. W.

M. Kline and I. W. Kay, Electromagnetic Theory and Geometric Optics (Wiley-Interscience, New York, 1965).

Kline, M.

M. Kline and I. W. Kay, Electromagnetic Theory and Geometric Optics (Wiley-Interscience, New York, 1965).

Potter, R. J.

R. J. Potter, J. Opt. Soc. Am. 51, 1079 (1961).

Snitzer, E.

E. Snitzer, J. Opt. Soc. Am. 51, 491 (1961).

Snyder, A. W.

A. W. Snyder, J. Opt. Soc. Am. 56, 601 (1966).

A. W. Snyder, IEEE Trans. Microwave Theory Tech. 17, 1138 (1969).

A. W. Snyder, IEEE Trans. Microwave Theory Tech. 17, 1130 (1969).

Varela, F. G.

F. G. Varela and W. Wiitanen, J. Gen. Physiol. 55, 336 (1970).

Wiitanen, W.

F. G. Varela and W. Wiitanen, J. Gen. Physiol. 55, 336 (1970).

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1965), p. 38.

Other (12)

D. Gloge, Proc. Inst. Electr. Eng. A 58, 1513 (1970).

N. S. Kapany, Fiber Optics (Academic, New York, 1967).

J. M. Enoch, J. Opt. Soc. Am. 53, 57 (1963).

F. G. Varela and W. Wiitanen, J. Gen. Physiol. 55, 336 (1970).

R. J. Potter, J. Opt. Soc. Am. 51, 1079 (1961).

A. W. Snyder, IEEE Trans. Microwave Theory Tech. 17, 1130 (1969).

E. Snitzer, J. Opt. Soc. Am. 51, 491 (1961).

A. W. Snyder, J. Opt. Soc. Am. 56, 601 (1966).

A. W. Snyder, IEEE Trans. Microwave Theory Tech. 17, 1138 (1969).

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962), p. 292.

M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1965), p. 38.

M. Kline and I. W. Kay, Electromagnetic Theory and Geometric Optics (Wiley-Interscience, New York, 1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.