Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. H. Hopkins, in Optical Instruments and Techniques, 1969, edited by J. H. Dickson (Oriel, Newcastle-upon-Tyne, 1970), pp. 444–452.

Hopkins, H. H.

H. H. Hopkins, in Optical Instruments and Techniques, 1969, edited by J. H. Dickson (Oriel, Newcastle-upon-Tyne, 1970), pp. 444–452.

Other (1)

H. H. Hopkins, in Optical Instruments and Techniques, 1969, edited by J. H. Dickson (Oriel, Newcastle-upon-Tyne, 1970), pp. 444–452.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

B1, B2, and B3 are three fixed planes normal to the optical axis. R is an arbitrary ray specified by S and T. By definition, V = tanθ. The lens positions relative to B2 are functions di(χ) of the single zoom parameter χ. The position of the image plane relative to B3 is given by l.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Y ( χ ) = y a ( χ ) S + y b ( χ ) T , V ( χ ) = v a ( χ ) S + v b ( χ ) T ,
g = y a ( χ ) v b ( χ ) - y b ( χ ) v a ( χ ) 1
l = - Y / V = - ( y a ( χ ) S + y b ( χ ) T ) / ( v a ( χ ) S + v b ( χ ) T ) .
f ( S , T ) = ( y ˙ a v a - y a v ˙ a ) S 2 + ( y ˙ a v b + y ˙ b v a - y a v ˙ b - y b v ˙ a ) S T + ( y ˙ b v b - y b v ˙ b ) T 2 = 0 ,
y ˙ a v a - y a v ˙ a = 0.
y ˙ b v b - y b v ˙ b = 0.
y ˙ a v b + y ˙ b v a - y a v ˙ b - y b v ˙ a = 0.
y ˙ a v b + y a v ˙ b - y ˙ b v a - y b v ˙ a = 0 ,
y ˙ a v b - y b v ˙ a = 0 ,             y ˙ b v a - y a v ˙ b = 0.
y ˙ a = v ˙ a = y ˙ b = v ˙ b = 0.