Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Shajenko and C. D. Johnson, Appl. Phys. Letters 13, 44 (1968).
    [Crossref]
  2. P. A. Fryer, Appl. Opt. 9, 1216 (1970).
    [Crossref]
  3. P. A. Fryer, Repts. Progr. Phys. 33, 489 (1970).
    [Crossref]
  4. F. M. Mottier, in Applications De l’Holographie, edited by J. C. Viénot, J. Bulabois, and J. Pasteur (Univ. de Besançon, France, 1970), p. 6.
  5. C. C. Aleksoff, Appl. Opt. 10, 1329 (1970).
    [Crossref]
  6. K. A. Stetson, J. Opt. Soc. Am. 60, 1378 (1970).
    [Crossref]

1970 (4)

1968 (1)

P. Shajenko and C. D. Johnson, Appl. Phys. Letters 13, 44 (1968).
[Crossref]

Aleksoff, C. C.

Fryer, P. A.

P. A. Fryer, Appl. Opt. 9, 1216 (1970).
[Crossref]

P. A. Fryer, Repts. Progr. Phys. 33, 489 (1970).
[Crossref]

Johnson, C. D.

P. Shajenko and C. D. Johnson, Appl. Phys. Letters 13, 44 (1968).
[Crossref]

Mottier, F. M.

F. M. Mottier, in Applications De l’Holographie, edited by J. C. Viénot, J. Bulabois, and J. Pasteur (Univ. de Besançon, France, 1970), p. 6.

Shajenko, P.

P. Shajenko and C. D. Johnson, Appl. Phys. Letters 13, 44 (1968).
[Crossref]

Stetson, K. A.

Appl. Opt. (2)

Appl. Phys. Letters (1)

P. Shajenko and C. D. Johnson, Appl. Phys. Letters 13, 44 (1968).
[Crossref]

J. Opt. Soc. Am. (1)

Repts. Progr. Phys. (1)

P. A. Fryer, Repts. Progr. Phys. 33, 489 (1970).
[Crossref]

Other (1)

F. M. Mottier, in Applications De l’Holographie, edited by J. C. Viénot, J. Bulabois, and J. Pasteur (Univ. de Besançon, France, 1970), p. 6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (10)

Equations on this page are rendered with MathJax. Learn more.

M ( Ω ) = ( 1 / C 0 T ) 0 T f i ( t ) exp [ i Ω cos ω t ] d t ,
C 0 = ( 1 / T ) 0 T f i ( t ) d t .
M ( Ω ) = J 0 ( Ω ) + n = 1 ( - 1 ) n J 2 n ( Ω ) ( 1 / C 0 π ) - π π f i ( θ ) cos 2 n θ d θ ,
C 0 = 1 π 2 - π π f i ( θ ) d θ .
C n = ( 1 / π ) - π π f i ( θ ) cos 2 n θ d θ ,
M ( Ω ) = J 0 ( Ω ) + n = 1 ( - 1 ) n C n C 0 π J 2 n ( Ω ) .
M ( Ω ) ( 2 π Ω ) 1 2 [ 1 C 0 n = 0 C n ] cos ( Ω - 1 4 π ) .
M 2 ( Ω ) 1 C 0 2 2 π Ω cos 2 ( Ω - 1 4 π ) .
M ( Ω ) ( 2 π Ω ) 1 2 1 C 0 [ n = 0 C 2 n cos ( Ω - 1 4 π ) + i m = 0 C 2 m - 1 sin ( Ω - 1 4 π ) ] .
M ( Ω ) M * ( Ω ) = 2 π Ω C 0 2 [ ( n = 0 C 2 n ) 2 cos 2 ( Ω - 1 4 π ) + ( n = 0 C 2 n + 1 ) 2 sin 2 ( Ω - 1 4 π ) ] .