Abstract

By use of a laser remote-sensing technique, the fluctuation profiles of the refractive index of the troposphere were measured at Chester, N. J. The measurements were made with a ground-based optical tracker that tracks a retroreflector mounted on a tethered balloon. The balloon was flown at several altitudes and the flux scintillation on the returned beam was measured. From the scintillation data obtained, the structure constant, which is a measure of the strength of turbulence, was estimated as a function of altitude. The measurements were made during day time in the winter of 1969 and the summer of 1970. The average refractive-index-fluctuation profiles for the winter and the summer months show the turbulence close to the ground in summer months to be greater than that in winter months, by approximately a factor of 3.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. M. Koprov and L. R. Tsvang, Izv. Atm. Oceanic Phys. 2, 1142 (1966).
  2. Yu A. Volkov, V. P. Kukharets, and L. R. Tsvang, Izv. Atm. Oceanic Phys. 4, 1026 (1968).
  3. R. S. Lawrence, G. R. Ochs, and S. F. Clifford, J. Opt. Soc. Am. 60, 826 (1970).
    [Crossref]
  4. V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw–Hill, New York, 1961), Ch. 1, p. 19.
  5. This is based on the estimate of the inner-scale size of the turbulence as reported in Ref. 8 by D. L. Fried and J. D. Cloud, J. Opt. Soc. Am. 56, 1670 (1966).
  6. F. P. Carlson and A. Ishimaru, J. Opt. Soc. Am. 59, 319 (1969).
    [Crossref]
  7. M. Subramanian and J. A. Collinson, Bell System Tech. J. 46, 623 (1967).
    [Crossref]
  8. T. L. Ho, J. Opt. Soc. Am. 59, 385 (1969).
    [Crossref]
  9. L. R. Tsvang and Yu A. Volkov, Izv. Atm. Oceanic Phys. 3, 790 (1967).

1970 (1)

1969 (2)

1968 (1)

Yu A. Volkov, V. P. Kukharets, and L. R. Tsvang, Izv. Atm. Oceanic Phys. 4, 1026 (1968).

1967 (2)

L. R. Tsvang and Yu A. Volkov, Izv. Atm. Oceanic Phys. 3, 790 (1967).

M. Subramanian and J. A. Collinson, Bell System Tech. J. 46, 623 (1967).
[Crossref]

1966 (2)

V. M. Koprov and L. R. Tsvang, Izv. Atm. Oceanic Phys. 2, 1142 (1966).

This is based on the estimate of the inner-scale size of the turbulence as reported in Ref. 8 by D. L. Fried and J. D. Cloud, J. Opt. Soc. Am. 56, 1670 (1966).

Carlson, F. P.

Clifford, S. F.

Cloud, J. D.

This is based on the estimate of the inner-scale size of the turbulence as reported in Ref. 8 by D. L. Fried and J. D. Cloud, J. Opt. Soc. Am. 56, 1670 (1966).

Collinson, J. A.

M. Subramanian and J. A. Collinson, Bell System Tech. J. 46, 623 (1967).
[Crossref]

Fried, D. L.

This is based on the estimate of the inner-scale size of the turbulence as reported in Ref. 8 by D. L. Fried and J. D. Cloud, J. Opt. Soc. Am. 56, 1670 (1966).

Ho, T. L.

Ishimaru, A.

Koprov, V. M.

V. M. Koprov and L. R. Tsvang, Izv. Atm. Oceanic Phys. 2, 1142 (1966).

Kukharets, V. P.

Yu A. Volkov, V. P. Kukharets, and L. R. Tsvang, Izv. Atm. Oceanic Phys. 4, 1026 (1968).

Lawrence, R. S.

Ochs, G. R.

Subramanian, M.

M. Subramanian and J. A. Collinson, Bell System Tech. J. 46, 623 (1967).
[Crossref]

Tatarski, V. I.

V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw–Hill, New York, 1961), Ch. 1, p. 19.

Tsvang, L. R.

Yu A. Volkov, V. P. Kukharets, and L. R. Tsvang, Izv. Atm. Oceanic Phys. 4, 1026 (1968).

L. R. Tsvang and Yu A. Volkov, Izv. Atm. Oceanic Phys. 3, 790 (1967).

V. M. Koprov and L. R. Tsvang, Izv. Atm. Oceanic Phys. 2, 1142 (1966).

Volkov, Yu A.

Yu A. Volkov, V. P. Kukharets, and L. R. Tsvang, Izv. Atm. Oceanic Phys. 4, 1026 (1968).

L. R. Tsvang and Yu A. Volkov, Izv. Atm. Oceanic Phys. 3, 790 (1967).

Bell System Tech. J. (1)

M. Subramanian and J. A. Collinson, Bell System Tech. J. 46, 623 (1967).
[Crossref]

Izv. Atm. Oceanic Phys. (3)

V. M. Koprov and L. R. Tsvang, Izv. Atm. Oceanic Phys. 2, 1142 (1966).

Yu A. Volkov, V. P. Kukharets, and L. R. Tsvang, Izv. Atm. Oceanic Phys. 4, 1026 (1968).

L. R. Tsvang and Yu A. Volkov, Izv. Atm. Oceanic Phys. 3, 790 (1967).

J. Opt. Soc. Am. (4)

R. S. Lawrence, G. R. Ochs, and S. F. Clifford, J. Opt. Soc. Am. 60, 826 (1970).
[Crossref]

T. L. Ho, J. Opt. Soc. Am. 59, 385 (1969).
[Crossref]

This is based on the estimate of the inner-scale size of the turbulence as reported in Ref. 8 by D. L. Fried and J. D. Cloud, J. Opt. Soc. Am. 56, 1670 (1966).

F. P. Carlson and A. Ishimaru, J. Opt. Soc. Am. 59, 319 (1969).
[Crossref]

Other (1)

V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw–Hill, New York, 1961), Ch. 1, p. 19.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Laser vertical propagation link: (1) tracker transreceiver, (2) stabilizer, (3) retroreflector, and (4) instrumentation trailer.

Fig. 2
Fig. 2

Tracker transreceiver block diagram.

Fig. 3
Fig. 3

Tracker transreceiver component details: (1) transmitter, (2) telescope, (3) circulator, (4) beam splitter, (5), (7) filters, (6) eyepiece lens, (8) aperture, (9), (10) PMT’s, (11) chopper.

Fig. 4
Fig. 4

Configuration for analysis: (S) source, (R) receiver, (M) retroreflector.

Fig. 5
Fig. 5

Scintillation profiles for individual days: closed circles, data of 6/10/70; crosses, data of 6/29/70—measurements made with increasing altitude; open triangles, data of 6/29/70—measurements made with decreasing altitude.

Fig. 6
Fig. 6

Structure-constant profile: broke line, 6/10/70; solid line, 6/29/70.

Fig. 7
Fig. 7

Average scintillation profile: solid line, summer; broken line, winter. Summer data: open triangles, 6/10/70 a.m.; pluses, 6/10/70 p.m.; open squares, 6/23/70 p.m.; asterisks, 6/29/70 a.m.; open stars, 6/30/70 a.m. Winter data: closed circles, 11/25/69 p.m.; crosses, 12/12/69 p.m.

Fig. 8
Fig. 8

Average structure-constant profile for summer and winter: solid line, summer; broken line, winter.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

χ 2 = 0.56 k 7 / 6 0 L C n 2 ( x ) x 5 / 6 ( 1 - x L ) 5 / 6 d x ,
χ 2 = 1.12 k 7 / 6 ( csc θ ) 11 / 6 0 h C n 2 ( z ) z 5 / 6 ( 1 - z 2 h ) 5 / 6 d z .
1 1.12 k 7 / 6 d χ v 2 d h = 1 2 5 / 6 C n 2 ( h ) h 5 / 6 + 5 12 h 2 0 h C n 2 ( z ) z 11 / 6 ( 1 - z 2 h ) - 1 / 6 d z .
C n 2 ( z ) = a 0 + a 1 z + a 2 z 2 + + a n z n .
1 h 5 / 6 1 0.56 k 7 / 6 d χ v 2 d h = a 0 b ˜ 0 + a 1 b ˜ 1 h + a 2 b ˜ 2 h 2 + + a n b ˜ n h n ,
b ˜ j = ( 2 ) 1 / 6 + 5 b j
b j = 1 17 + 6 j + 1 12 1 17 + 6 ( j + 1 ) + 7 288 1 17 + 6 ( j + 2 ) .