Abstract

Conventional ultrasonic imaging techniques, including holographic, have high resolution in angle, but relatively poor resolution in range, because resolution in range is obtained only by use of selective focus or parallax, which is useful only with small focal ratio. The paper presents the principle and some experimental results of new ultrasonic imaging techniques that use a linear FM ultrasonic pulse and a pulse of light. This method gives high resolution both in angle and in range; it may be considered to be an application of pulse-compression techniques, used in chirp radar, to ultrasonic imaging, but it has image-forming as well as range-discriminating capability.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Sato and M. Ueda, in Optical Instruments and Techniques, edited by J. H. Dickson (Oriel, Newcastle upon Tyne, 1970), p. 453.
  2. A. Korpel, Appl. Phys. Letters 9, 425 (1966).
    [Crossref]
  3. D. H. McMahon, Proc. IEEE 55, 1602 (1967).
    [Crossref]
  4. W. T. Maloney, IEEE Spectrum 6, 40 (1969).
    [Crossref]
  5. J. S. Gerig and H. Montague, Proc. IEEE 52, 1753 (1964).
    [Crossref]
  6. A. R. Shulman, Optical Data Processing (Wiley, New York, 1970), p. 387.

1969 (1)

W. T. Maloney, IEEE Spectrum 6, 40 (1969).
[Crossref]

1967 (1)

D. H. McMahon, Proc. IEEE 55, 1602 (1967).
[Crossref]

1966 (1)

A. Korpel, Appl. Phys. Letters 9, 425 (1966).
[Crossref]

1964 (1)

J. S. Gerig and H. Montague, Proc. IEEE 52, 1753 (1964).
[Crossref]

Gerig, J. S.

J. S. Gerig and H. Montague, Proc. IEEE 52, 1753 (1964).
[Crossref]

Korpel, A.

A. Korpel, Appl. Phys. Letters 9, 425 (1966).
[Crossref]

Maloney, W. T.

W. T. Maloney, IEEE Spectrum 6, 40 (1969).
[Crossref]

McMahon, D. H.

D. H. McMahon, Proc. IEEE 55, 1602 (1967).
[Crossref]

Montague, H.

J. S. Gerig and H. Montague, Proc. IEEE 52, 1753 (1964).
[Crossref]

Sato, T.

T. Sato and M. Ueda, in Optical Instruments and Techniques, edited by J. H. Dickson (Oriel, Newcastle upon Tyne, 1970), p. 453.

Shulman, A. R.

A. R. Shulman, Optical Data Processing (Wiley, New York, 1970), p. 387.

Ueda, M.

T. Sato and M. Ueda, in Optical Instruments and Techniques, edited by J. H. Dickson (Oriel, Newcastle upon Tyne, 1970), p. 453.

Appl. Phys. Letters (1)

A. Korpel, Appl. Phys. Letters 9, 425 (1966).
[Crossref]

IEEE Spectrum (1)

W. T. Maloney, IEEE Spectrum 6, 40 (1969).
[Crossref]

Proc. IEEE (2)

J. S. Gerig and H. Montague, Proc. IEEE 52, 1753 (1964).
[Crossref]

D. H. McMahon, Proc. IEEE 55, 1602 (1967).
[Crossref]

Other (2)

A. R. Shulman, Optical Data Processing (Wiley, New York, 1970), p. 387.

T. Sato and M. Ueda, in Optical Instruments and Techniques, edited by J. H. Dickson (Oriel, Newcastle upon Tyne, 1970), p. 453.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The ultrasonic imaging system. A, sound absorber; C, collimated light; W, window; E, water tank; O, object; S, slit made of sound absorber; T, transducer; L, light shutter synchronized to the FM signal.

Fig. 2
Fig. 2

The frequency characteristics of the ultrasonic transmitting system with constant input voltage (300 mV).

Fig. 3
Fig. 3

Two characters “H” and “L.”

Fig. 4
Fig. 4

Reconstructed image of the object with continuous 3.1-MHz ultrasonic waves.

Fig. 5
Fig. 5

Reconstructed image of “H” with linear FM ultrasonic waves.

Fig. 6
Fig. 6

Reconstructed image of “L” with linear FM ultrasonic waves.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

W ( x , z ) = 1 for x 2 a and             z 2 b = 0 otherwise ,
E ( t ) = P T ( t ) cos μ ( t - T 0 ) 2 ,
P T ( t ) = 1 for 0 t T = 0 otherwise .
f ( x , z , t ) = exp { j v P t ( r ) cos μ [ r - V ( t - T 0 ) + L ] 2 / V 2 } ,
r 2 = ( x - x 0 ) 2 + ( z - z 0 ) 2 , P t ( r ) = 1             for V t - L r V t - L - V T = 0             otherwise .
v = 2 π D Δ n / λ ,
f ( x , z , t 1 ) = exp [ j v P t 1 ( r ) cos μ r 2 / V 2 ] .
y = ( π / λ ) ( V 2 / μ ) .
( d / d t ) [ μ ( t - T 0 ) 2 ] t = ( T / 2 ) = μ ( T - 2 T 0 ) = ω 0 ,
T 0 = x 0 + a / V .
μ = ( V / 2 x 0 ) ω 0 , E ( t ) = P 2 a / V ( t ) cos ( V / 2 x 0 ) ω 0 [ t - ( x 0 + a ) / V ] 2 .
ω max = ω 0 ( 1 + a / x 0 ) , ω min = ω 0 ( 1 - a / x 0 ) .
y = ( λ / Λ 0 ) x 0 ,