Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Fried, Proc. IEEE 55, 57 (1967).
    [Crossref]
  2. J. P. Moreland and S. A. Collins, J. Opt. Soc. Am. 59, 10 (1969).
    [Crossref]
  3. D. L. Fried, IEEE J. QE-3, 213 (1967).
    [Crossref]
  4. R. F. Lutomirski and H. T. Yura, Appl. Opt. 10, 1652 (1971).
    [Crossref] [PubMed]
  5. The term complex phase is used to denote the combination of ordinary phase variation φ and log-amplitude variation l, i.e., ψ = l+iφ.
  6. This is not a statistical equivalence. The two random variables are exactly equivalent; their correlation is perfect.
  7. D. L. Fried, J. Opt. Soc. Am. 55, 1427 (1965).
    [Crossref]
  8. D. M. Chase, J. Opt. Soc. Am. 56, 33 (1966).
    [Crossref]
  9. D. L. Fried, J. Opt. Soc. Am. 56, 1372 (1966).
    [Crossref]

1971 (1)

1969 (1)

1967 (2)

D. L. Fried, IEEE J. QE-3, 213 (1967).
[Crossref]

D. L. Fried, Proc. IEEE 55, 57 (1967).
[Crossref]

1966 (2)

1965 (1)

Appl. Opt. (1)

IEEE J. (1)

D. L. Fried, IEEE J. QE-3, 213 (1967).
[Crossref]

J. Opt. Soc. Am. (4)

Proc. IEEE (1)

D. L. Fried, Proc. IEEE 55, 57 (1967).
[Crossref]

Other (2)

The term complex phase is used to denote the combination of ordinary phase variation φ and log-amplitude variation l, i.e., ψ = l+iφ.

This is not a statistical equivalence. The two random variables are exactly equivalent; their correlation is perfect.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( P ) = A d r 1 d r 2 exp [ i k ( s 1 - s 2 ) ] × exp [ ψ ( r 1 ) + ψ * ( r 2 ) ] U ( r 1 ) U * ( r 2 ) .
SNR = B d r 1 d r 2 exp [ i k ( s 1 - s 2 ) ] × exp [ χ ( r 1 ) + χ * ( r 2 ) ] V ( r 1 ) V * ( r 2 ) ,